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Question 1

(the Simplex method)

Consider the following linear program:

minimize z = x1 + αx2 +x3,

subject to x1 + 2x2 − 2x3 ≤ 0,

−x1 +x3 ≤−1,

x1, x2, x3 ≥ 0.

a) Solve this problem for α = −1 by using phase I and phase II of the simplex(2p)
method.

[Aid: Utilize the identity
(

a b
c d

)

−1

=
1

ad − bc

(

d −b
−c a

)

for producing basis inverses.]

b) Which values of α leads to an unbounded dual problem? Motivate without(1p)
additional calculations!

Question 2(3p)

(necessary local and sufficient global optimality conditions)

Consider an optimization problem of the following general form:

minimize f(x), (1a)

subject to x ∈ S, (1b)

where S ⊆ R
n is nonempty, closed and convex, and f : R

n → R∪ {+∞} is in C1

on S.

Establish the following two results on the local/global optimality of a vector
x
∗ ∈ S in this problem.

Proposition 1 (necessary optimality conditions, C1 case) If x
∗ ∈ S is a local

minimum of f over S then

∇f(x∗)T(x − x
∗) ≥ 0, x ∈ S (2)

holds.
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Theorem 2 (necessary and sufficient global optimality conditions, C 1 case) Sup-
pose that f : R

n → R is convex on S. Then,

x
∗ is a global minimum of f over S ⇐⇒ (2) holds.

Question 3

(Newton’s method revisited)

Consider the unconstrained optimization problem to

minimize f(x),

subject to x ∈ R
n,

where f : R
n → R is in C1 on R

n.

Notice that we may not have access to second derivatives of f at every point of
R

n. “Newton’s method” referred to below should be understood as follows: in
each iteration step, one solves the Newton equation, followed by a line search
with respect to f in the direction obtained.

a) Explain in some detail how Newton’s method can be extended to the above(2p)
problem.

b) Suppose now that f ∈ C2 on R
n. Explain why Newton’s method must be(1p)

modified when the Hessian matrix is not guaranteed to be positive definite.
Also, provide at least one such modification.

Question 4(3p)

(modelling)

You are responsible for the planning of a soccer tournament where all 14 teams
in the Swedish national league will participate. The teams shall be put into two
groups of 7 each, in which all teams will play each other once. The winners of
the two groups will then play a final. The decision to make is which teams will
play in which group. The objective is to minimize the total expected travelling
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distance. The distances between the home towns of two teams i and j are given
by the constants dij(= dji), i, j ∈ {1, . . . , 14}. The constants pi, i ∈ {1, . . . , 14},
represent the number of points team i took in the national league last year.
Assume that the teams are sorted so that the team with the highest point is
represented by i = 1, the team with second highest point by i = 2, and so on.
The chance of a team i winning its group is assumed to be the ratio between pi

and the sum of the pi’s in its group. You are not allowed to put the two teams
with the highest pi’s (team 1 and team 2) in the same group. Neither are you
allowed to arrange the groups so that the difference between the sum of points of
the teams in one group compared to the sum of points of the teams in the other
group exceeds 15% of the total number of points. All games are played at the
home ground of one of the two participating teams; which one is not important
since dij = dji.

Your task is to model this problem as a nonlinear (integer) program. All functions
defined have to be differentiable and explicit!

Figure 1: The 14 teams shall be put into two groups of 7 each.

[Note: Optimization problems of this type have been used, e.g., for the planning
of college baseball series in the US.]
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Question 5

(interior penalty methods)

Consider the problem to

minimize f(x) := (x1 − 2)4 + (x1 − 2x2)
2,

subject to g(x) := x2

1 − x2 ≤ 0.

We attack this problem with an interior penalty (barrier) method, using the
barrier function φ(s) = −s−1. The penalty problem is to

minimize
x∈

�
n

f(x) + νχ̂S(x), (1)

where χ̂S(x) = φ(g(x)), for a sequence of positive, decreasing values of the
penalty parameter ν.

We repeat a general convergence result for the interior penalty method below.

Theorem 3 (convergence of an interior point algorithm) Let the objective func-
tion f : R

n → R and the functions gi, i = 1, . . . , m, defining the inequality
constraints be in C1(Rn). Further assume that the barrier function φ : R → R+

is in C1 and that φ′(s) ≥ 0 for all s < 0.

Consider a sequence {xk} of points that are stationary for the sequence of prob-
lems (1) with ν = νk, for some positive sequence of penalty parameters {νk}
converging to 0. Assume that limk→+∞ xk = x̂, and that LICQ holds at x̂.
Then, x̂ is a KKT point of the problem at hand.

In other words,

xk stationary in (1)
xk → x̂ as k → +∞

LICQ holds at x̂







=⇒ x̂ stationary in our problem.

a) Does the above theorem apply to the problem at hand and the selection of(1p)
the penalty function?

b) Implementing the above-mentioned procedure, the first value of the penalty(2p)
parameter was set to ν0 = 10, which is then divided by ten in each iteration,
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and the initial problem (1) was solved from the strictly feasible point (0, 1)T.
The algorithm terminated after six iterations with the following results:
x6 ≈ (0.94389, 0.89635)T, and the multiplier estimate (given by ν6φ

′(g(x6)))
µ̂6 ≈ 3.385. Confirm that the vector x6 is close to being a KKT point. Is
it also near-globally optimal? Why/Why not?

Question 6

(linear programming)

Consider the linear program

z(b) := maximum 2x1 + 3x2 + x3,

subject to x1 − x2 + 2x3 ≤ 1,

4x1 + 2x2 − x3 ≤ b,

x1, x2, x3 ≥ 0,

a) For b = 2 its optimal dual solution is claimed to be y = (5/3, 7/3)T.(1p)
Examine in a suitable way whether this is correct. (Here, it is not suitable
to first solve the linear program or its corresponding LP dual problem!)

b) Use linear programming duality to determine the value of z(b) for each(1p)
b ≥ 0 and give a principal graphical description of the function z(b). Which
are its most important mathematical properties?

c) Find, for each b ≥ 0 the marginal value of an increase of the right-hand(1p)
side of the second constraint, that is, find for each b ≥ 0 the value of the
right derivative of the function z(b). Which marginal value is acheived for
b = 2?
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Question 7

(Lagrangian duality)

Consider the following linear programming problem:

minimize z = x2, (1)

subject to x1 ≤
3

2
, (2)

2x1 + 3x2 ≥ 6, (3)

x1, x2 ≥ 0. (4)

We will attack this problem by using Lagrangian duality.

a) Consider Lagrangian relaxing the complicating constraint (3). Write down(1p)
explicitly the resulting Lagrangian subproblem of minimizing the Lagrange
function over the remaining constraints. By varying the multiplier, con-
struct an explicit formula for the Lagrangian dual function. Plot the
dual function against the (only) dual variable, and state explicitly the La-
grangian dual problem.

b) Pick three primal feasible vectors and evaluate their respective objective(1p)
values. Pick also three dual feasible values and evaluate their respective
objective values. Using these six numbers, provide an interval wherein the
optimal value of both the primal and dual problem must lie, and thereby
also illustrate the Weak Duality Theorem.

c) Solve the Lagrangian dual problem from a). By using the primal–dual(1p)
optimality conditions from Chapter 6, generate the (unique) optimal primal
solution to the problem given above. Verify the Strong Duality Theorem.

Good luck!
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Question 1

(the Simplex method)

a) After changing sign of the second inequality and adding two slack variables(2p)
s1 and s2, a BFS cannot be found directly. We create the phase I problem
through an added artificial variable a1 in the second linear constraint; the
value of a1 is to be minimized.

We use the BFS based on the variable pair (s1, a1) as the starting BFS
for the phase I problem. In the first iteration of the Simplex method x1 is
the only variable with a negative reduced cost; hence x1 is picked as the
incoming variable. The minimum ratio test shows that s1 should leave the
basis. In the next iteration the reduced cost for varialbe x3 is negative, and
x3 is picked as the incoming variable. The minimum ratio test shows that
a1 should leave the basis. We have found an optimal basis, xB = (x1, x3)

T ,
to the phase I problem. We proceed to phase II, since the basis is feasible
in the original problem.

Starting phase II with this BFS, we see that all reduced costs are positive,
c̃N = (α + 4, 2, 3)T > 0, and thus the BFS is optimal. xB = B−1b = (2, 1)T

so x∗ = (2, 0, 3)T and z∗ = cT
BxB = 3.

b) For the dual problem to be unbounded, weak duality shows that the primal(1p)
problem must be infeasible. Since α is in the cost vector of the primal
problem, the feasibilty is not affected by α. Hence, no values of α lead to
an unbounded feasible problem.

Question 2(3p)

(necessary local and sufficient global optimality conditions)

See Proposition 4.23 and Theorem 4.24.

Question 3

(Newton’s method revisited)

a) See the text book on quasi-Newton methods.(2p)
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b) In order to be certain that the search direction given by the Newton sub-(1p)
problem is (a) defined at all and (b) is a direction of descent, the Hessian
matrix must be positive definite. There are several ways in which to modify
a matrix that is not positive definite such that the resulting matrix has this
property.

The classic one is the Levenberg–Marquardt modification, in which one adds
a diagonal matrix to the Hessian matrix such that their sum is positive
definite. A second possibility is to replace Newton’s method altogether
with a quasi-Newton method, as explained in a). Special modifications
also include the use of directions of negative curvature, in case the Hessian
matrix is indefinite. See the text book for more details.

Question 4

(modelling)

Introduce the binary variables

xi =

{

1 if team i is placed in group 1
0 otherwise

, i = 1, . . . , 14

The objective function can then be written as

min
13
∑

i=1

14
∑

j=i+1

dij (xixj + (1 − xi)(1 − xj)) +
14
∑

i=1

14
∑

j=1

dij

pixi
∑

14
k=1 pkxk

·
pj(1 − xj)

∑

14
k=1 pk(1 − xk)

where the first term represents the travelling within the groups and the second
term the expected travelling in the final. The constraints are

14
∑

i=1

xi = 7, (1)

x1 + x2 = 1 (2)
14
∑

i=1

xipi ≤
14
∑

i=1

(1 − xi)pi + 0.15
14
∑

i=1

pi, (3)

14
∑

i=1

(1 − xi)pi ≤
14
∑

i=1

xipi + 0.15
14
∑

i=1

pi, (4)

xi ∈ {0, 1} i = 1, . . . , 14. (5)

Constraint (1) makes sure that there are 7 teams in each group, constraint (2)
that the two best teams are not in the same group and the constraints (3) and
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(4) that the groups are arranged so that the difference between the sum of points
in the two groups are not bigger than 15% of the total points.

Another possibility (maybe better) is to introduce more binary variables, uij and
vij, where

uij =

{

1 if team i and team i are both placed in group 1
0 otherwise

, i, j = 1, . . . , 14,

vij =

{

1 if team i and team i are both placed in group 2
0 otherwise

, i, j = 1, . . . , 14.

We can then add to the previous model the linear forcing constraints

xi + xj ≤ uij + 1 i, j = 1, . . . , 14, (6)

xi + xj ≥ 1 − vij i, j = 1, . . . , 14, (7)

the binary constraints

uij ∈ {0, 1} i, j = 1, . . . , 14, (8)

vij ∈ {0, 1} i, j = 1, . . . , 14, (9)

and replace the first term in the previous objective function with the simpler
linear term

13
∑

i=1

14
∑

j=i+1

dij (uij + vij) .

Question 5

(interior penalty methods)

a) All functions involved are in C1. The conditions on the penalty function(1p)
are fulfilled, since φ′(s) = 1/s2 ≥ 0 for all s < 0. Further, LICQ holds
everywhere. The answer is yes.

b) With the given data, it is clear that the only constraint is (almost) ful-(2p)
filled with equality: (x6)

2
1 − (x6)2 ≈ −0.005422 ≈ 0. We set up the KKT

conditions to see whether it is fulfilled approximately. Indeed, we have the
following corresponding to the system ∇f(x6) + µ̂6∇g(x6) = 02:

(

−6.4094265
3.39524

)

+ 3.385

(

1.88778
−1

)

≈

(

−0.01929
0.01024

)

,
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and the right-hand side can be considered near-zero. Since µ̂6 ≥ 0 we
approximately fulfill the KKT conditions.

For the last part, we establish that the problem is convex. The feasible set
clearly is convex, since g is a convex function and the constraint is on the
“≤”-form. The Hessian matrix of f is

(

12(x1 − 2)2 + 2 −4
−4 8

)

,

which is positive semidefinite everywhere (in fact, positive definite outside
of the region defined by x1 = 2); hence, f is convex on R

2. We conclude
that our problem is convex, and hence the KKT conditions imply global op-
timality. The vector x6 therefore is an approximate global optimal solution
to our problem.

Question 6

(linear programming)

a) By complementarity slackness (Theorem 10.12),(1p)

xT(ATy − c) = 0 ⇔











x1(y1 + 4y2 − 2) = x1 · 0 = 0,
x2(−y1 + 2y2 + 2) = x2 · 2 = 0 ⇒ x2 = 0,
x3(2y1 − y2 − 1) = x3 · 0 = 0.











Further, it follows that

yT(Ax − b) = 0 ⇔











x1 + 2x3 = 1,
4x1 − x3 = 2,
x2 = 0











⇔ {x1 = 5/9, x2 = 0, x3 = 2/9} .

Since x ≥ 0 and y ≥ 0 it follows that y = (2/3, 1/3) is an optimal solution
to the LP dual problem.

b) For β = 2 the optimal basis is xB = (x1, x3)
T. This holds for those values(2p)

of β such that xB is feasible and optimal. Here, B =

(

1 2
4 −1

)

, so

that xB = B−1b = 1/9 ·

(

1 2
4 −1

)(

1
β

)

= 1/9 ·

(

1 + 2β
4 − β

)

≥ 0 ⇔

−1/2 ≤ β ≤ 4. Optimality follows from cT
N − cT

BB−1N = (−2, 0, 0) −
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(2, 1) · 1/9 ·

(

1 2
4 −1

)(

−1 1 0
2 0 1

)

= (−2,−2/3,−1/3) ≤ 0. Within the

interval −1/2 ≤ β ≤ 4, z(β) = (2 + β)/3.

For β > 4, x3 becomes negative ⇒ x3 is not in the optimal basis for β > 4.
Entering variable (according to the criterion in the dual simplex method)

is x2. The next basis is xB = (x1, x2) = B−1b = 1/6 ·

(

2 1
−4 1

)(

1
β

)

=

1/6 ·

(

2 + β
β − 4

)

, which is optimal, since cT
N −cT

BB−1N = (1, 0, 0)−(2,−2) ·

1/6 ·

(

2 1
−4 1

)(

2 1 0
−1 0 1

)

= (−3,−2, 0) ≤ 0. Feasibility holds for

xB ≥ 0 ⇔ β ≥ 4. Hence, for β ≥ 4, z(β) = 2.

The function z(β) is piecewise linear and concave on the halfline β ≥ −1/2.

B

z(B)

322 4−2

1

2

−1

−1/2−1

1/2

Question 7

(Lagrangian duality)

a) The Lagrangian subproblem is to, for any µ ≥ 0,(1p)

minimize x2 − µ(2x1 + 3x2 − 6),

subject to x1 ∈ [0, 3/2],

x2 ≥ 0.

This problem has the following solution sets for varying values of µ: for
µ ∈ [0, 1/3), x(µ) = (3/2, 0)T uniquely; for µ = 1/3, x1(µ) = 3/2 while
x2(µ) ≥ 0 arbitrarily; finally, for µ > 1/3, there exists no optimal solution
to the Lagrangian subproblem.
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Inserting these solutions into the Lagrangian subproblem we obtain that
the Lagrangian dual function has the following appearance: for µ ∈ [0, 1/3],
q(µ) = 6µ − 3µ = 3µ, while for µ > 1/3, q(µ) = −∞.

We can therefore state an explicit linear dual problem as follows:

maximize 3µ,

subject to 0 ≤ µ ≤ 1/3.

b) x = (1, 2)T =⇒ z = 2; x = (1, 4/3)T =⇒ z = 4/3; x = (3/2, 1)T =⇒(1p)
z = 1.

µ = 0 =⇒ q(µ) = 0; µ = 1/6 =⇒ q(µ) = 1/2; µ = 1/3 =⇒ q(µ) = 1.

c) µ∗ = 1/3. From a) the optimality conditions for the Lagrangian subprob-(1p)
lem yields that x1(µ

∗) = x∗

1 = 3/2, while x2(µ
∗) ≥ 0. Since µ∗ 6= 0, we

must satisfy the Lagrangian relaxed constraint with equality; this yields the
condition that 3 + 3x2 = 6, hence x2 = 1. We verify that z∗ = q∗ = 1.


