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Question 1

(the simplex method)

Consider the following linear program:

minimize x1 +2x2 −x3 (P)

subject to x1 +2x2 −x3 ≤ 1,

2x1 −x2 ≥ 1,

x1, x2, x3 ≥ 0.

a) Solve the linear program (P) by using phase I and phase II of the simplex(2p)
method.

Use the following identity to compute the necessary matrix inverses:

(

a b
c d

)

−1

=
1

ad − bc

(

d −b
−c a

)

.

b) Use your answer from a) to either construct a feasible solution to the linear(1p)
programming dual of (P), or to show that the linear programming dual of
(P) is infeasible.

Question 2(3p)

(application of the Levenberg–Marquardt algorithm)

Consider the problem to

minimize
x∈Rn

f(x) := lnx1 − ln x2 +
1

2
(x1 − 1)2 +

1

2
(x2 − 1)2. (1)

Let x0 = (1, 1)T be the initial point chosen. Apply one iteration of Newton’s
method with the Levenberg–Marquardt modification of the Hessian. In the line
search step choose the shift in the Levenberg–Marquardt modification of the
Hessian to make sure that the unit step provides descent with respect to f .
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Question 3(3p)

(on the SQP algorithm and the KKT conditions)

Consider the following nonlinear programming problem: find x∗ ∈ R
n that solves

the problem to

minimize f(x), (1a)

subject to gi(x) ≤ 0, i = 1, . . . , m, (1b)

hj(x) = 0, j = 1, . . . , ℓ, (1c)

where f : R
n → R, gi, and hj : R

n → R are given functions in C1 on R
n.

We are interested in establishing that the classic SQP subproblem tells us whether
an iterate xk ∈ R

n satisfies the KKT conditions or not, thereby establishing a
natural termination criterion for the SQP algorithm.

Given the iterate xk, the SQP subproblem is to

minimize
p

1

2
pTBkp + ∇f(xk)

Tp, (2a)

subject to gi(xk) + ∇gi(xk)
Tp ≤ 0, i = 1, . . . , m, (2b)

hj(xk) + ∇hj(xk)
Tp = 0, j = 1, . . . , ℓ, (2c)

where the matrix Bk ∈ R
n×n is symmetric and positive semi-definite.

Establish the following statement: the vector xk is a KKT point in the problem
(1) if and only if p = 0n is a globally optimal solution to the SQP subproblem
(2). In other words, the SQP algorithm terminates if and only if xk is a KKT
point.

Hint: Compare the KKT conditions of (1) and (2).
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Question 4(3p)

(convexity)

Let f : R → R be a convex function. A version of Jensen’s inequality can be
stated as follows: Let g1, . . . , gk ∈ R and h1, . . . , hk ∈ R+ be non-negative scalars
such that

k
∑

i=1

hi = 1.

Then,

f

(

k
∑

i=1

higi

)

≤

k
∑

i=1

hif(gi).

This result will be extended as follows. Assume that f ∈ C1 is convex and let
g : R → R and h : R → R+ be functions such that

∫R h(x) dx = 1 and

∫R h(x)g(x) dx < ∞.

Your task is to show that

f

(
∫R h(x)g(x) dx

)

≤

∫R h(x)f(g(x)) dx.

Hint: Utilize a C1 characterization of convexity.

Question 5(3p)

(strong duality in linear programming)

Consider the following standard form of a linear program:

minimize cTx,

subject to Ax = b,

x ≥ 0n,

where A ∈ R
m×n, c, x ∈ R

n, and b ∈ R
m. State and prove the Strong Duality

Theorem in linear programming.
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Question 6

(Lagrangian duality)

Consider the problem to

minimize
x

f(x) :=
1

2
x2

1 + x1 + 4x2

2 − 2x2,

subject to x1 + x2 ≥ 4,

x1, x2 ≥ 1.

Suppose we Lagrangian relax the first constraint and consider the problem to
maximize the Lagrangian dual function q over the set {µ | µ ≥ 0 }.

a) Derive an explicit form of the Lagrangian dual problem. In other words,(1p)
provide an explicit formula of the Lagrangian dual function q.

b) Calculate the function q at the following three values of µ: 0, 5/2, and 5.(1p)
Also, calculate the value of the primal objective function f at the follow-
ing three primal feasible vectors: (2, 2)T, (1, 3)T, (3, 1)T. Based on these
calculations, provide a non-empty and closed interval [a, b] for which the
primal optimal value f ∗ satisfies f ∗ ∈ [a, b]. (Note that the properties of
the problem ensures that f ∗ = q∗.)

c) Derive an explicit form of the derivative q′ of the Lagrangian dual function(1p)
q. Calculate the value of q′ at the following three values of µ: 0, 5/2, and 5.
Based on these calculations, provide a non-empty and closed interval [a, b]
for which the dual optimal solution µ∗ satisfies µ∗ ∈ [a, b].
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Question 7(3p)

(modelling)

You are asked to construct apartment store rooms in a basement according to
Figure 1.

A B C D E F

G H I J

Figure 1: A sketch of the basement.

Each of the five store rooms should have a door of width 90 cm. The five doors
have already been delivered. The rest of the walls are to be constructed with
mesh panels of different widths. Observe that the panels are not divisible. The
widths and costs of the mesh panels are given in Table 1.

Table 1: The data of the mesh panels.

Mesh panel Width (cm) Cost (EUR/cm)

1 20 0.57

2 30 0.38

3 70 0.20

4 80 0.19

5 100 0.16

6 120 0.15

7 150 0.14

Of course, the doors must be placed so that they can be opened; an infeasible as
well as a feasible construction are illustrated in Figure 7.

The walls to be constructed are BG, CH, DI, EJ and AF, according to Figure 1.
The lengths of BG, CH, DI and EJ are all 150 cm. The lengths of the rest of the
sections are given in Table 2.

For the construction of the walls BG, CH, DI and EJ it is obviously cheapest
to use the mesh panels of width 150 cm. However, the cheapest construction of



EXAM
TMA947/MAN280 — APPLIED OPTIMIZATION 6

Infeasible construction

Feasible construction

Figure 2: The upper figure illustrates an infeasible construction; the door to the left
cannot be opened. The lower figure illustrates a feasible construction; both the doors
can be opened.

Table 2: The lengths of the sections.

Section Length (cm)

AB 150

BC 180

CD 160

DE 200

EF 190

the rest of the walls (i.e., between A and F) is not that obvious. Your task is to
formulate an integer linear program for finding the cheapest construction of the
wall AF.

Good luck!
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Question 1

(the simplex method)

a) The problem in standard form is to(2p)

minimize x1 + 2 x2− x3

subject to x1 + 2 x2− x3+ x4 = 1,

2 x1− x2 −x5= 1,

x1, x2, x3, x4, x5 ≥ 0.

Introduce an artificial variable in the second constraint to get the phase I
problem to

minimize w = a

subject to x1 + 2 x2− x3+ x4 = 1,

2 x1− x2 − x5+a= 1,

x1, x2, x3, x4, x5, a≥ 0.

Start with the basis xB = (x4, a)T. The simplex method then gives that x1

is the entering variable and a the leaving. Hence we have found a feasible
solution for which a = 0, which means that xB = (x4, x1)

T is a feasible so-
lution to the phase II problem. The reduced costs of the nonbasic variables
xN = (x2, x3, x5)

T become

cT
N − cT

BB−1N = (5/2,−1, 1/2)T,

which means that x3 is the entering variable. Further, we have that

B−1b = (1/2, 1/2)T,

B−1N 2 = (−1, 0)T.

Hence it follows that the phase II problem is unbounded, and we can draw
the conclusion that the original problem (P) is unbounded.

b) Since (P) is unbounded it follows from weak duality that its linear program-(1p)
ming dual is infeasible.
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Question 2(3p)

(application of the Levenberg–Marquardt algorithm)

With a unit step the Levenberg–Marquardt algorithm is, for a given xk, to gen-
erate xk+1 through the formula

xk+1 = xk −∇
2f(xk + γkI

n)−1
∇f(xk),

where γk ≥ 0 is the shift used in iteration k.

For the given problem and starting point,

f(x0) = 0; ∇f(x0) =

(

1
−1

)

; ∇
2f(x0) =

(

0 0
0 2

)

.

With the shift γ0 the next iterate therefore is
(

1
1

)

−

(

1/γ0

−1/(2 + γ0)

)

.

Inserting this into f yields that it is enough to set the value of γ0 to something
slightly larger than 1, while a choice of γ0 = 1 would produce an undefined value
of f (notice the presence of the logarithmic terms).

With γ0 = 2 we obtain x1 = (1/2, 5/4)T with f(x1) ≈ −0.76.

Question 3(3p)

(on the SQP algorithm and the KKT conditions)

The result is based on a comparison between the KKT conditions of the original
problem,

minimize f(x), (1a)

subject to gi(x) ≤ 0, i = 1, . . . , m, (1b)

hj(x) = 0, j = 1, . . . , ℓ, (1c)

and those of the SQP subproblem,

minimize
p

1

2
pTBkp + ∇f(xk)

Tp, (2a)

subject to gi(xk) + ∇gi(xk)
Tp ≤ 0, i = 1, . . . , m, (2b)

hj(xk) + ∇hj(xk)
Tp = 0, j = 1, . . . , ℓ. (2c)
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We first note that the latter problem is a convex one (the matrix Bk was assumed
to be positive semidefinite), and that the solution pk is characterized by its KKT
conditions, since the constraints are linear (so that Abadie’s CQ is fulfilled). It
remains to compare the two problems’ KKT conditions. With pk = 0n they are
in fact identical!

Question 4(3p)

(convexity)

We have the following convexity characterization:

f(y) ≥ f(z) + f ′(z)T(y − z).

The assertion follows by letting y = g(x) and z =
∫R h(x)g(x) dx, then multiply

both the sides by h(x), and finally integrate both sides over R.

Question 5(3p)

(strong duality in linear programming)

See the notes for the proof.

Question 6

(Lagrangian duality)

a) We obtain that(1p)

q(µ) =



















2µ + 31
2
, if µ ≤ 2,

−1
2
(µ − 1)2 + 3µ + 2, if 2 ≤ µ ≤ 6,

−1
2
(µ − 1)2 − 4 (2+µ)

8

2
+ 4µ, if µ ≥ 6.

b) q(0) = 31
2
; q(5

2
) = 65

8
; q(5) = 9.(1p)

f(2, 2) = 16; f(1, 3) = 311
2
; f(3, 1) = 91

2
.

Conclusion: f ∗ ∈ [9, 91
2
].
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c) From a) we obtain that(1p)

q(µ) =















2, if µ ≤ 2,

−(µ − 1) + 3, if 2 ≤ µ ≤ 6,

−(µ − 1) − 2+µ

8
+ 4, if µ ≥ 6.

q′(0) = 2; q′(5
2
) = 3

2
; q′(5) = −1.

We note that the function q is concave and differentiable, and therefore its
derivative is decreasing. According to the above, it must have a stationary
point, hence the optimal solution, within the closed interval [5

2
, 5] which

hence defines an interval wherein the optimum lies.

Question 7(3p)

(modelling)

For d = 1, . . . , 6 and m = 1, . . . , 7, introduce the integer variables

xdm = number of mesh panels of type m used between door d − 1 and d,

where “door” 0 is the wall on the left-hand side and “door” 6 is the wall on
the right-hand side. Further, let cm and wm, respectively, be the cost and the
width, respectively, of mesh panel m for m = 1, . . . , 7, and let l1, . . . , l5 denote
the lengths of the sections AB, BC, CD, DE, and EF. Then the following integer
linear program solves the problem:

minimize
7
∑

m=1

6
∑

d=1

cmxdm

subject to
7
∑

m=1

k
∑

d=1

wmxdm + 90k ≤

k
∑

i=1

li, k = 1, . . . , 5,

7
∑

m=1

k+1
∑

d=1

wmxdm + 90k ≥

k
∑

i=1

li, k = 1, . . . , 4,

7
∑

m=1

k+1
∑

d=1

wmxdm + 90k =
k
∑

i=1

li, k = 5,

xdm ∈ Z
6×7
+ .


