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Question 1

(the Simplex method)

Consider the linear program

minimize z = x1 +3x2 +x3

subject to 2x1 −5x2 +x3 ≤−5,

2x1 −x2 +2x3 ≤ 4,

x1, x2, x3 ≥ 0.

a) Solve the problem by using Phase I & II of the Simplex method.(2p)

Hint: Some matrix inverses that can be useful when solving the problem
are:

(

2 −5
2 −1

)

−1

=
1

8

(

−1 5
−2 2

)

,

(

5 0
−1 1

)

−1

=
1

5

(

1 0
1 5

)

,

(

−1 −1
2 0

)

−1

=
1

2

(

0 1
−2 −1

)

,

(

5 −1
−1 2

)

−1

=
1

9

(

2 1
1 5

)

.

b) Is the solution obtained unique? Motivate!(1p)

Question 2

(optimality conditions)

Consider the optimization problem to

minimize f(x, y) :=
1

2
(x − 2)2 +

1

2
(y − 1)2,

subject to x − y ≥ 0,

y ≥ 0,

y(x − y) = 0,

(1)

where x, y ∈ R.

a) Find all points of global and local minimum, as well as all KKT-points.(1p)

Hint: Draw the problem graphically!

Is this a convex problem?



EXAM
TMA947/MAN280 — APPLIED OPTIMIZATION 2

b) Demonstrate that the linear independence constraint qualification (LICQ)(1p)
is violated at every feasible point of the problem (1).

The problem (1) can be solved as follows. Based on the original problem (1),
we can formulate two optimization problems, both of which are convex and
have one linear constraint. Having solved the two problems, the solution to
the problem (1) is the solution with the best objective value.

Show which two problems should be solved.

Hint: Use the graphics used in a)!

c) In part b) we devised a “procedure” for solving the problem (1) in which(1p)
two problems are solved and their respective optimal solutions compared.
Generalize this procedure to the more general optimization problem to

minimize g(x),

subject to aT

i x ≥ bi, i = 1, . . . , n,

xi ≥ 0, i = 1, . . . , n,

xi(a
T

i x − bi) = 0, i = 1, . . . , n,

where x = (x1, . . . , xn)T ∈ R
n, ai ∈ R

n, bi ∈ R, i = 1, . . . , n, and g : R
n →

R is a convex differentiable function.

How many problems do we need to solve, and what are their forms?

Question 3(3p)

(modelling)

Figure 1 below describes a production process by which we can make three prod-
ucts, A, B, and C, from the raw materials D, E, and F.

The numbers at the top of the figure provide the maximum sales and unit revenues
for the three products. The numbers at the bottom indicate the raw materials
used and the unit costs of the raw materials. We assume that the supply of the
raw materials is unlimited.

The network structure shows the processing requirements for the products. The
nodes represent operations that the intermediate products must pass through.
Each node is labeled with the corresponding operation number. The arcs (links)
represent the inputs to the operations. Product A requires one unit from oper-
ation 1. Product B requires one unit from operation 2. Product C requires one
unit from operation 3.
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PSfrag replacements

A B C

D E F

1 2 3

4 5

6 7 8

100200 300

12 SEK 21 SEK 8 SEK

4 SEK 3 SEK 2 SEK

(2 min) (4)

(4)

(6)

(6)

(7)
(1)
(2)

Product
Sales (# units)

Unit revenue

Raw material

Unit cost

Machine 1

Machine 2

Machine 3

(2400 min)

(2400 min)

(2400 min)
(7) (1) (2)

Figure 1: The production process.

The product at operation 1 is made from one unit passing out of operation 4.
The product at operation 2 is made from one unit each of the products passing
out of operations 4 and 5. The product at operation 3 is made from one unit
passing out of operation 5.

A unit at operation 4 is made from one unit each from operations 6 and 7. A
unit at operation 5 is made from one unit each from operations 7 and 8.

Finally, operation 6 requires one unit of raw material D. Operation 7 requires
one unit of raw material E. Operation 8 requires one unit of raw material F.

The numbers adjacent to the nodes are the operation times in minutes. For
example, operation 6 requires 7 minutes in order to produce one unit of output.
The operations use time on Machine 1, Machine 2, and Machine 3. Each machine
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has a weekly capacity of 2400 minutes. The products share the capacities of the
machines. For example, if 100 units of each product were produced, 1200 minutes
would be used on machine 1. Note that one unit of product B needs 10 minutes
of machine 2 because both operations 4 and 5 are needed for one unit of B.

Formulate a linear integer programming model (that is, if the integer requirements
are relaxed we shall end up with an ordinary linear program) for finding the
weekly production quantities that maximize the total income!

Hint: Introduce one variable for each arc (link) in the figure.

Question 4

(applications of the Newton algorithm)

a) Let a be a positive real number.(1p)

Consider the optimization problem to

minimize f(x) = ax − log(x),

subject to x > 0.
(1)

Prove that there exists a globally optimal solution to the problem (1), which
is furthermore unique and equal to a−1.

Motivate every step!

If you wish, you may replace the condition x > 0 with x ≥ 0 in your
analysis, as long as you are aware of the fact that log(0) = −∞.

b) Show that Newton’s method with unit steps as applied to the problem (1)(1p)
gives a computationally viable procedure for computing x = a−1. That is,
show that every iteration of Newton’s method requires only additions (or
subtractions) and multiplications to be performed; thus, we never need to
perform divisions in order to compute the next iterate.

(Note: This idea is in fact used in the Intel Itanium processor!)

Construct an example (that is, choose some appropriate a > 0 and a starting
point x0 > 0) that satisfies the following requirements:

(i) Newton’s method converges, that is, ∞ 6= x̄ = limk→∞ xk, but

(ii) x̄ 6= a−1.

(Note: This illustrates the local nature of Newton’s method, which is guar-
anteed to converge only when we start “near enough” to an optimal solu-
tion.)
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c) Similarly to the previous parts, construct a convex optimization problem(1p)
that can be used to calculate x = a−1/2.

[That is, Newton’s method with unit steps applied to your problem should
not contain any other operations than additions (or subtractions) and mul-
tiplications.]

Question 5

(optimality conditions)

Farkas’ Lemma can be stated as follows:

Let A be an m × n matrix and b an m × 1 vector. Then exactly one of the
systems

Ax = b, (I)

x ≥ 0n,

and

ATy ≤ 0n, (II)

bTy > 0,

has a feasible solution, and the other system is inconsistent.

a) Prove Farkas’ Lemma.(2p)

b) Consider the problem to(1p)

minimize f(x) :=
1

2
(x1 − 1)2 +

1

2
(x2 − 1)2,

subject to 2x1 − x2 = 0,

0 ≤ x1 ≤ 2,

0 ≤ x2 ≤ 2.

Geometrically, it is not difficult to see that the vector x̄ := (0, 0)T cannot
be an optimal solution to this problem. Your task is to prove this fact
rigorously by using Farkas’ Lemma, namely, prove that x̄ := (0, 0)T is not
optimal to the above problem, by using Farkas’ Lemma to show that there
must exist a feasible descent direction with respect to f at x̄.
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Question 6(3p)

(convexity)

Carathéodory’s Theorem can be stated as follows:

Let x ∈ conv V, where V ⊆ R
n. Then x can be expressed as a convex combination

of n + 1 or fewer points of V .

Prove Carathéodory’s Theorem.

When you prove this result, you may make reference, without proof, to the fol-
lowing proposition:

Let V ⊆ R
n. Then, conv V is the set of all convex combinations of points of V .

Question 7

(duality in linear and nonlinear optimization)

a) Consider the LP problem to(1p)

minimize z = cTx +dTv

subject to A1x +Bv≥ b1,

A2x = b2,

∑̀

k=1

vk = a,

x ≥ 0n,

v≥ 0`,

where x ∈ R
n, v ∈ R

`, c ∈ R
n, d ∈ R

`, A1 ∈ R
m1×n, A2 ∈ R

m2×n,
B ∈ R

m1×`, b1 ∈ R
m1 , b2 ∈ R

m2 , and a ∈ R.

State its LP dual problem.

b) Consider the strictly convex quadratic optimization problem to(2p)

minimize f(x) := 2x2

1
+ x2

2
− 4x1 − 6x2, (1a)

subject to − x1 + 2x2 ≤ 4. (1b)

For this problem, do the following:
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[1] Explicitly state its Lagrangian dual function q and its Lagrangian dual
problem, associated with the Lagrangian relaxation of the constraint (1b);

[2] Solve this Lagrangian dual problem and provide the optimal Lagrange
multiplier µ∗;

[3] Provide the globally optimal solution x∗ to the problem (1);

[4] Prove that strong duality holds, that is, prove that q(µ∗) = f(x∗) holds.

Good luck!
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Question 1

(the Simplex method)

a) By introducing slack variables we get the problem in standard form:

minimize z = x1 +3x2 +x3 (P)

subject to −2x1 +5x2 −x3 −x4 = 5,

2x1 −x2 +2x3 +x5 = 4,

x1, x2, x3, x4, x5 ≥ 0.

The Phase I problem becomes

minimize w = a

subject to −2x1 +5x2 −x3 −x4 +a = 5,

2x1 −x2 +2x3 +x5 = 4,

x1, x2, x3, x4, x5, a ≥ 0.

Start with the basis defined by xB = (a, x5)
T, xN = (x1, x2, x3, x4)

T. The
reduced costs of xN become (2,−5, 1, 1), so x2 is the entering variable. The
leaving variable becomes a. The new basis is given by xB = (x2, x5)

T,
xN = (x1, a, x3, x4)

T, and the reduced costs of xN are (0, 1, 0, 0), which
means that the current basis is optimal to the Phase I problem and since
w∗ = 0 it follows that xB = (x2, x5)

T, xN = (x1, x3, x4)
T define a BFS to the

Phase II problem (P). The reduced costs of xN becomes (2.2, 1.6, 0.6)T ≥
03, which means that an optimal solution to (P) is given by

x =

(

xB

xN

)

=













x2

x5

x1

x3

x4













=













1
5
0
0
0













.

Hence an optimal solution to the original problem is given by

x∗ =





x1

x2

x3



 =





0
1
0



 .

b) Since the reduced costs of xN are all strictly positive, it follows that the
BFS found is the unique optimal solution (see Proposition 10.9 in the course
notes).
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Question 2

(optimality conditions)

a) Drawing the figure one can verify that the problem is non-convex, because
the feasible set is not convex (even though the objective function is). The
optimization problem amounts to finding the shortest distance from the
point (x, y)T = (2, 1)T to the feasible set, and the geometrical considera-
tions give us one local minimum (x, y)T = (2, 0)T with the objective value
f((2, 0)T) = 1/2 and a global minimum (x, y)T = (3/2, 3/2)T with objective
value f((3/2, 3/2)T) = 1/4.

Introducing the KKT-multipliers µ1 and µ2 for the inequality constraints,
as well as λ for the equality constraint, the KKT system for this problem
can be stated as follows:



























































(

x − 2
y − 1

)

+

(

−1
1

)

µ1 +

(

0
−1

)

µ2 +

(

y
x − 2y

)

λ =

(

0
0

)

y − x ≤ 0,

−y ≤ 0,

y(x − y) = 0,

µ1, µ2 ≥ 0,

µ1(x − y) = 0,

µ2y = 0.

As it can be verified, this system gives two [in the space (x, y)T] KKT-
points:

• The point of local minimum: (x, y)T = (2, 0)T, µ1 = 0, µ2 ≥ 0,
2λ = 1 + µ2.

• The point of global minimum: (x, y)T = (3/2, 3/2)T, µ1 ≥ 0, µ2 = 0,
3λ = 1 + 2µ1.

b) A simple calculation shows that the gradients of the free constraints are:
∇g1(x, y) = (1,−1)T, ∇g2(x, y) = (0, 1)T, ∇g3(x, y) = (y, x − 2y)T. At
every feasible point we have either y = 0, which results in ∇g2(x, y) =
x∇g3(x, y), or x = y, which results in ∇g1(x, y) = y∇g3(x, y). In either
case, the LICQ is violated.

Again, from either geometrical or analytical considerations, we can split the
feasible set of the original problem into two (non-disjoint) parts defined by
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linear constraints:

F1 = { (x, y) ∈ R
2 | y = 0, x − y ≥ 0 },

and
F2 = { (x, y) ∈ R

2 | y ≥ 0, x − y = 0 }.

We can therefore solve two convex linearly constrained optimization prob-
lems:

minimize f(x, y),

subject to (x, y) ∈ F1,

and
minimize f(x, y),

subject to (x, y) ∈ F2,

and choose the best solution among the two.

c) The procedure in the previous part can be generalized for problems with
several complementarity constraints as follows. The feasible set can be split
into 2n parts FI, I ⊆ {1, . . . , n}, where

aT

i x = bi, and xi ≥ 0, i ∈ I,

aT

i x ≥ bi, and xi = 0, i 6∈ I.

Therefore, instead of solving the origial non-convex problem, which vio-
lates the LICQ, one can (in principle) solve 2n convex problems with linear
constraints.

Question 3

(modelling)

Introduce variables according to Figure 1.

Introduce constraints according to the following list:

Maximum sales:

x1 ≤ 200, x2 ≤ 100, x3 ≤ 300. (1)

Process balances, Machine 1:

y1 ≥ x1, y2 ≥ x2, y3 ≥ x2, y4 ≥ x3. (2)
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Figure 1: Variable definitions.

Process balances, Machine 2:

z1 ≥ y1 + y2, z2 ≥ y1 + y2, z3 ≥ y3 + y4, z4 ≥ y3 + y4. (3)

Process balances, Machine 3:

w1 ≥ z1, w2 ≥ z2 + z3, w3 ≥ z4. (4)

Weekly capacity, Machine 1:

2x1 + 4x2 + 6x3 ≤ 2400. (5)

Weekly capacity, Machine 2:

6(y1 + y2) + 4(y3 + y4) ≤ 2400. (6)
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Weekly capacity, Machine 3:

7z1 + (z2 + z3) + 2z4 ≤ 2400. (7)

Objective function:

f(x, w) = 12x1 + 21x2 + 8x3 − 4w1 − 3w2 − 2w3.

We end up with the linear integer program

maximize f(x, w),

subject to (1) − (7),

x, y, z, w ≥ 0 and integer.

Question 4

(applications of the Newton algorithm)

a) The objective function f(x) = ax − log(x) is strictly convex inside the
feasible set { x ∈ R | x > 0 }, since f ′′(x) = 1/x2 > 0 there; therefore,
every local minimum in this problem is also a global one, and the global
minimum is unique, provided any exists. Now we can test the necessary
(and sufficient in this case, owing to the convexity) optimality conditions

f ′(x) = a − x−1 = 0,

x > 0,

which is uniquely solvable, giving us x∗ = a−1 > 0.

b) Direct calculations show that

xk+1 = xk − f ′(xk)/f
′′(xk) = xk(2 − axk),

which does not involve any divisions.

Assuming that xk → x̄ (and thus also xk+1 → x̄) gives us

x̄ = x̄(2 − ax̄),

which has two solutions: x̄1 = a−1 or x̄2 = 0. It is the latter solution that is
not a global/local optimum of the original problem (it is not even feasible,
to start with). One can easily obtain this solution by starting from the
point x0 = 2/a > 0, which generates x1 = 0, and thus xk = 0 for all k ≥ 1.
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c) One can for example start from the optimality conditions

g′(x) = a − x−2 = 0,

x > 0,

to end up with the strictly convex minimization problem to

minimize g(x) = ax + x−1,

subject to x > 0.

It is verified as in b) that Newton’s method for this problem involves only
simple operations (additions/subtractions and multiplications).

Question 5

(optimality conditions)

Farkas’ Lemma can be stated as follows:

Let A be an m × n matrix and b an m × 1 vector. Then exactly one of the
systems

Ax = b, (I)

x ≥ 0n,

and

ATy ≤ 0n, (II)

bTy > 0,

has a feasible solution, and the other system is inconsistent.

a) Farkas’ Lemma is proved in Theorem 11.10.

b) At x̄ := (0, 0)T, the cone of feasible directions is

RS(x̄) = {p ∈ R
2 | 2p1 − p2 = 0; p ≥ 02 }

= {p ∈ R
2 | 2p1 − p2 ≤ 0; −2p1 + p2 ≤ 0; −p1 ≤ 0; −p2 ≤ 0 }.

At x̄ := (0, 0)T, the cone of descent directions is

◦

F (x̄) = {p ∈ R
2 | ∇f(x̄)Tp < 0 } = {p ∈ R

2 | p1 + p2 > 0 }.
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To prove that the set RS(x̄)∩
◦

F (x̄) is non-empty (that is, that there exists
a feasible descent direction), we define

A :=

(

2 −2 −1 0
−1 1 0 −1

)

and b =

(

1
1

)

.

The consistency of the system (II) then is equivalent to the existence of a
feasible descent direction (with p = y). We therefore need to establish that
the system (I) is inconsistent. The consistency of this system is equivalent
to the possibility to choose a non-negative x ∈ R

4 such that

(

2 −2 −1 0
−1 1 0 −1

)

x =

(

1
1

)

.

This is however impossible. (One way to check this is via Phase I in the
Simplex method.)

We are done.

Question 6

(convexity)

The proof of Carathéodory’s Theorem can be found in Theorem 3.8 in the Course
Notes.

Question 7

(duality in linear and nonlinear optimization)

a) The LP dual is to

maximize w = bT

1 y1 +bT

2 y2 +ay3

subject to AT

1 y1 +AT

2 y2 ≤ c,
BTy1 +1`y3 ≤d,

y1 ≥ 0m1 , y2 ∈ R
m2 , y3 ∈ R,

where 1m1 is the m1-vector of ones.
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b) With g(x) := −x1 + 2x2 − 4, the Lagrange function becomes

L(x, µ) = f(x) + µg(x)

= 2x2

1 + x2

2 − 4x1 − 6x2 + µ(−x1 + 2x2 − 4).

Minimizing this function over x ∈ R
2 yields [since L(·, µ) is a strictly convex

quadratic function for every value of µ, it has a unique minimum for every
value of µ] that its minimum is attained where its gradient is zero. This
gives us that

x1(µ) = (4 + µ)/4;

x2(µ) = 3 − µ.

Inserting this into the Lagrangian function, we define the dual objective
function as

q(µ) = L(x(µ), µ) = · · · = −2

(

4 + µ

4

)2

− (3 − µ)2 − 4µ.

This function is to be maximized over µ ≥ 0. We are done with task [1].

We attempt to optimize the one-dimensional function q by setting the
derivative of q to zero. If the resulting value of µ is non-negative, then
it must be a global optimum; otherwise, the optimum is µ∗ = 0.

We have that q′(µ) = · · · = 1 − 9µ

4
, so the stationary point of q is µ = 4/9.

Since its value is positive, we know that the global maximum of q over
µ ≥ 0 is µ∗ = 4/9. We are done with task [2].

Our candidate for the global optimum in the primal problem is x(µ∗) =
1

9
(10, 23)T. Checking feasibility, we see that g(x(µ∗)) = 0. Hence, without

even evaluating the values of q(µ∗) and f(x(µ∗)) we know they must be
equal, since q(µ∗) = f(x(µ∗))+µ∗g(x(µ∗)) = f(x(µ∗)), due to the fact that
we satisfy complementarity. We have proved that strong duality holds, and
therefore task [4] is done.

By the Weak Duality Theorem 7.4 follows that if a vector x is primal
feasible and f(x) = q(µ) holds for some feasible dual vector µ, then x must
be the optimal solution to the primal problem. (And µ must be optimal in
the dual problem.) Task [4] is completed by the remark that this is exactly
the case for the pair (x(µ∗), µ∗).


