TMA946/MAN280
 APPLIED OPTIMIZATION

Date:	$03-05-28$
Time:	House V, morning
Aids:	Text memory-less calculator
Number of questions:	$7 ;$ passed on one question requires 2 points of 3. Questions are not numbered by difficulty. To pass requires 10 points and three passed questions.
Examiner:	Michael Patriksson Teacher on duty:
Richards Grzibovskis (0740-459022)	

Exam instructions

When you answer the questions
State your methodology carefully.
Use generally valid methods and theory.
Only write on one page of each sheet. Do not use a red pen.
Do not answer more than one question per page.

At the end of the exam

Sort your solutions by the order of the questions.
Mark on the cover the questions you have answered.
Count the number of sheets you hand in and fill in the number on the cover.

Question 1

(The simplex method in linear programming)
Consider the following LP problem:

$$
\begin{aligned}
& \text { minimize } \quad z=\quad x_{1}-2 x_{2}-4 x_{3}+4 x_{4} \\
& \text { subject to }-x_{2}+2 x_{3}+x_{4} \leq 4 \text {, } \\
& \begin{aligned}
-2 x_{1}+x_{2}+x_{3}-4 x_{4} & \leq 5, \\
x_{1}-x_{2} & +2 x_{4} \leq 3,
\end{aligned}
\end{aligned}
$$

$(2 \mathbf{p})$ a) Find an optimal solution, or an extreme half-line along which the objective function diverges to $-\infty$, by using the Simplex method.
Some matrix inverses that might come in handy are

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & -1 & 0 \\
-4 & 1 & 0 \\
2 & -1 & 1
\end{array}\right)^{-1}=\frac{1}{3}\left(\begin{array}{ccc}
-1 & -1 & 0 \\
-4 & -1 & 0 \\
-2 & 1 & 3
\end{array}\right),\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \\
& \left(\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 1 & -4 \\
-1 & 0 & 2
\end{array}\right)^{-1}=\frac{1}{3}\left(\begin{array}{lll}
2 & -4 & -9 \\
2 & -1 & -3 \\
1 & -2 & -3
\end{array}\right),\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)^{-1}=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 2 & 0 \\
-1 & 2 & 3
\end{array}\right) .
\end{aligned}
$$

$(1 \mathbf{p}) \quad$ b) Find a feasible solution which has the objective value $z=-418$.

Question 2

(Modelling)
Suppose that we are interested in describing a feasible region as the union of a finite number of convex sets $X_{i} \subset \Re^{n}$, that is, that $X:=\cup_{i=1}^{m} X_{i}$ is the feasible set.
(1p) a) Establish through a counter-example that even though the sets X_{i} all are convex, their union X may not be.
$(\mathbf{2 p}) \quad$ b) Suppose that each set X_{i} is a polyhedron, and that the objective function $f: \Re^{n} \mapsto \Re$ is linear. Describe how we can formulate the problem to

$$
\underset{x \in X}{\operatorname{minimize}} f(x)
$$

as a type of mixed-integer linear program, where the variables are of two types, binary variables and continuous variables, and where the problem reduces to an LP whenever the binary variables are fixed.

(3p) Question 3

(Modelling in linear programming)

Nilsson \& Nilsson is a small company which manufactures furniture on their own, as well as acting as sub-contractors to other firms. Their main business is to manufacture simple bookshelves made from laminated particle-board (spånskiva). In order to manufacture bookshelves, the firm buys unlaminated particle-boards for b Skr per m^{2}, and laminates them using their own machines. Pre-laminated boards are available at c Skr per m^{2}. The boards are cut, and the resulting pieces are assembled into bookshelves. After packaging, the shelves are sold to local stores under the name KALLE for the price of $p_{1} \mathrm{Skr}$ per item.

Due to a limited demand, the company may sell at most k shelves this way. Impressed by their capabilities, IKEA has asked them to become a supplier of their wildly famous BILLY bookshelf, paying them p_{2} Skr per shelf. Each KALLE bookshelf requires $a_{1} m^{2}$ of particle-board whereas BILLY requires $a_{2} m^{2}$. Since the KALLE bookshelf is well adapted to the firm's equipment, it only takes e_{1} minutes to cut the material into the required pieces for one shelf, whereas each BILLY requires e_{2} minutes of cutting time.

Since the idea with IKEA furniture is that the customers themselves assemble the products, a BILLY shelf requires no assembly, whereas one KALLE requires f minutes of assembly-time. Finally, it takes g_{1} minutes to package one KALLE shelf, whereas it takes g_{2} minuteS to package one BILLY shelf. The company's machines may laminate at most $L m^{2}$ of particle-board per month. Two cutting-stations are available to the company, and together they provide 280 h of cutting time each month. The company has 16 employees which may split their time between packaging and assembly, and each employee spends 120 h per month working (the rest of the time is spent on sick-leave, vacations and so forth).

Formulate the problem to maximize the firm's profit under the given constraints.

Question 4

(The Frank-Wolfe algorithm)

(2p) a) Consider the following constrained nonlinear minimization problem:

$$
\begin{aligned}
& \underset{(x, y)}{\operatorname{minimize}} f(x, y):=x^{2}+y^{2}, \\
& \text { subject to }\left\{\begin{array}{l}
-1 \leq x \leq 2 \\
-1 \leq y \leq 1
\end{array}\right.
\end{aligned}
$$

Starting at the point $\left(x_{0}, y_{0}\right)=(2,1)$, perform one step of the Frank-Wolfe algorithm. Feel free to plot the problem and perform the algorithmic steps graphically, as long as you describe all the steps in detail with mathematical notation also.
Is the point obtained an optimal solution? Why/why not?
(1p) b) Consider the nonlinear optimization problem with linear constraints:

$$
(P)\left\{\begin{aligned}
f^{*}:= & \underset{x \in \Re^{n}}{\operatorname{minimum}} f(x) \\
& \text { subject to } A x \leq b,
\end{aligned}\right.
$$

where $f: \Re^{n} \rightarrow \Re$ is convex and differentiable, $A \in \Re^{n \times m}, b \in \Re^{m}$.
The value f^{*} is the optimal value of f over the feasible set in the problem (P). Let further L_{k}^{*} denote the optimal value of the Frank-Wolfe subproblem at the feasible point x_{k} (where $A x_{k} \leq b$):

$$
\left(P_{L}\right)\left\{\begin{array}{c}
L_{k}^{*}:=\underset{z \in \Re^{n}}{\operatorname{minimum}} \nabla f\left(x_{k}\right)^{\mathrm{T}}\left(z-x_{k}\right), \\
\text { subject to } A z \leq b .
\end{array}\right.
$$

Show that $f\left(x_{k}\right)-f^{*} \leq-L_{k}^{*}$ always holds. (That is, the optimal value of the Frank-Wolfe subproblem allows us to estimate the distance to the optimum in terms of the objective function by providing a lower bound on f^{*}.)

EXAM
TMA946/MAN280 - APPLIED OPTIMIZATION

Question 5

(Interior penalty methods in nonlinear programming)

Consider the problem to

$$
\begin{aligned}
\operatorname{minimize} f(x) & :=x_{1}+x_{2}, \\
\text { subject to } g_{1}(x) & :=-x_{1}^{2}+x_{2} \geq 0, \\
g_{2}(x) & :=x_{1} \geq 0
\end{aligned}
$$

$(1 p) \quad$ a) What is the globally optimal solution to this problem?
Feel free to plot the problem and determine the solution graphically, as long as you can motivate your solution.
$(2 \mathbf{p})$ b) Suppose that we attack this problem with the use of an interior penalty (or, barrier) method, where the barrier function is chosen as $\phi(g(x)):=$ $-\log (g(x))$. Describe the steps of the algorithm. Further, suppose that we are able to find the globally optimal solution to each unconstrained penalty problem. Describe these optimal solutions, and prove that their sequence converges to the unique optimal solution to the problem.

Question 6

(Optimality conditions in linear programming)

The semi-assignment problem arises in some relaxation methods for problems in integer programming. Its statement is as follows:

$$
\begin{aligned}
& \operatorname{minimize} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}, \\
& \text { subject to } \sum_{i=1}^{n} x_{i j}=1, \quad j=1, \ldots, n, \\
& x_{i j} \geq 0, \quad i=1, \ldots, n, \quad j=1, \ldots, n .
\end{aligned}
$$

Its interpretation as describing a semi-assignment becomes clear if one adds $x_{i j} \in$ $\{0,1\}$ for all i and j to the constraints: then it is clear that we can interpret each pair (i, j) as a job to be assigned to a particular machine (or member of staff), where i denotes machine and j denotes job. A semi-assignment is one which assigns precisely one machine to each job. (An assignment is one in which we also request that each machine is assigned exactly one job; a semi-assignment can assign many jobs to the same machine, and no jobs at all to some others.)
(1p) a) Prove that the constraints $x_{i j} \in\{0,1\}$ are redundant. That is, establish that by solving the above LP problem, we can automatically make sure that the resulting optimal solution is binary.
$(\mathbf{2 p}) \quad$ b) The semi-assignment problem is a very simple LP problem, which can be solved by the following, very simple, greedy algorithm:

For each $j=1, \ldots, n$, do the following:
(1) Find the smallest value of $c_{i j}$ over all $i \in\{1, \ldots, n\}$. Let i_{j}^{*} be the index corresponding to that least value. (This corresponds to finding the cheapest machine for the job.)
(2) Assign machine i_{j}^{*} to job j : let $x_{i j}^{*}=1$ for $i=i_{j}^{*}$, and $x_{i j}^{*}=0$ for $i \neq i_{j}^{*}$.

The resulting solution is clearly feasible, since it assigns each job to exactly one machine, and the solution x^{*} is also non-negative. Prove, by using linear programming duality, in particular the primal-dual optimality conditions, that this algorithm is correct, that is, that it does solve the semi-assignment problem.
Hint: Write down the LP dual problem, state the primal-dual optimality conditions, and show that the solution given by the above algorithm satisfies these conditions.

(3p) Question 7

(Convexity and optimality)

Consider the convex optimization problem to

$$
(P)\{\underset{x \in X}{\operatorname{minimize}} f(x),
$$

where $f: \Re^{n} \mapsto \Re$ is a continuously differentiable function which is convex on the set X; the set $X \subset \Re^{n}$ is convex and non-empty. We suppose that the set X is compact (that is, closed and bounded), so that the problem is guaranteed to have a non-empty set of optimal solutions, denoted by X^{*}.

Establish the following interesting result: for all optimal solutions x^{*}, the value of the gradient of f is the same! In other words, if x^{*} and \hat{x} both are optimal solutions (that is, are in the set X^{*}), then $\nabla f\left(x^{*}\right)=\nabla f(\hat{x})$ holds.

Hint: Utilize the convexity of the problem. In particular, utilize that a convex function f is such that

$$
f(y) \geq f(x)+\nabla f(x)^{\mathrm{T}}(y-x), \quad x, y \in \Re^{n}
$$

holds; this inequality can in fact be used as a definition of the gradient of the differentiable, convex function f at x. Also utilize the following characterization of an optimal solution to the problem (P): a feasible solution x^{*} to the convex problem (P) is globally optimal in (P) if and only if

$$
\nabla f\left(x^{*}\right)^{\mathrm{T}}\left(y-x^{*}\right) \geq 0, \quad y \in X
$$

> Solutions to exam May 28,2003 TMA $946 /$ MAN 280 Applied optimization

1. a) By introducing the slack variables x_{5}, x_{6} and x_{7} we get

$$
\begin{array}{lrrrrllll}
\operatorname{minimize} & z= & x_{1} & -2 x_{2} & -4 x_{3} & +4 x_{4} & & & =4, \\
\text { subject to } & & -x_{2} & +2 x_{3} & +x_{4} & +x_{5} & & & =5, \\
& -2 x_{1} & +x_{2} & +x_{3} & -4 x_{4} & & +x_{6} & & =5 \\
x_{1} & -x_{2} & & +2 x_{4} & & +x_{7} & =3, \\
x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}, & x_{6}, & x_{7} & \geq 0 .
\end{array}
$$

Let $x_{B}=\left[x_{5}, x_{6}, x_{7}\right]$ and $x_{N}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ be the initial basic and nonbasic vector respectively. The reduced costs of the nonbasic variables then become

$$
c_{N}^{T}-c_{B}^{T} B^{-1} N=[1,-2,-4,4]
$$

and thus x_{3} is the entering variable. Further, we have

$$
\begin{aligned}
B^{-1} b & =[4,5,3]^{T}, \\
B^{-1} N_{3} & =[2,1,0]^{T},
\end{aligned}
$$

which gives

$$
\underset{j,\left(B^{-1} N_{3}\right)_{j}>0}{\arg \min } \frac{\left(B^{-1} b\right)_{j}}{\left(B^{-1} N_{3}\right)_{j}}=1
$$

so x_{5} is the leaving variable. The new basic and nonbasic vectors are $x_{B}=\left[x_{3}, x_{6}, x_{7}\right]$ and $x_{N}=\left[x_{1}, x_{2}, x_{5}, x_{4}\right]$, and the reduced costs of the nonbasic variables become

$$
c_{N}^{T}-c_{B}^{T} B^{-1} N=[1,-4,2,6],
$$

so x_{2} is the entering variable, and

$$
\begin{aligned}
B^{-1} b & =[2,3,3]^{T}, \\
B^{-1} N_{2} & =[-1 / 2,3 / 2,-1]^{T},
\end{aligned}
$$

which gives

$$
\underset{j,\left(B^{-1} N_{2}\right)_{j}>0}{\arg \min } \frac{\left(B^{-1} b\right)_{j}}{\left(B^{-1} N_{2}\right)_{j}}=2,
$$

and thus x_{6} is the leaving variable. The new basic and nonbasic vectors become $x_{B}=$ $\left[x_{3}, x_{2}, x_{7}\right]$ and $x_{N}=\left[x_{1}, x_{6}, x_{5}, x_{4}\right]$, and the reduced costs of the nonbasic variables are

$$
c_{N}^{T}-c_{B}^{T} B^{-1} N=[-13 / 3,8 / 3,2 / 3,-6]
$$

so x_{4} is the entering variable and

$$
\begin{aligned}
B^{-1} b & =[3,2,5]^{T}, \\
B^{-1} N_{4} & =[-1,-3,-1]^{T},
\end{aligned}
$$

which means that the problem is unbounded and the objective function diverges to $-\infty$ along the extreme half-line given by

$$
\begin{equation*}
x(t)=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=[0,2,3,0]+t[0,3,1,1], \quad t \geq 0 \tag{1}
\end{equation*}
$$

b) The desired feasible solution can be found along the half-line given by (1). More precisely,

$$
c^{T} x(t)=0-2 \cdot(2+3 t)-4 \cdot(3+t)+4 t=-6 t-16
$$

so by choosing $t=67$ we get the feasible solution

$$
x(67)=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=[0,203,70,67],
$$

and since $c^{T} x(67)=-418$ we are done.

2a) Take $x_{1}=[1,2]$ and $x_{2}=[3,4]$. The win if the two intervale clearly is mot convex.
b) For each X_{i}, let $x^{i} \in X_{i}$ be one type of courstmint. In order to havre x belonging to the anion of the sets x_{i} we define an indicator $\delta_{i} e\{0,1\}$, for cachet. The resulting constraints are ar follows:

$$
\begin{aligned}
& x=\sum_{i=1}^{m} \delta_{i} x^{i} \\
& x^{i} \in x_{i}, i=1 \ldots, m \\
& \sum_{i=1}^{m} \delta_{i}=1, \\
& \delta_{i} \in\{0,1\}, \quad i=1, \ldots, m
\end{aligned}
$$

When $\delta_{i}, i=1, \ldots, m$ is fixed to a feasible value, we hare selected one of the dec, x_{i} for which $x=x^{i}$ holds. Clearly, then, the problem to minimize $f(x)$ inlject to the above constraints is a mixed-integer Linear program according to the detimitim.
3.

Kari ablest:
x_{1} : Bought unlaminated particle-board
x_{2} :- Bought Laminated partiche-board
Y_{1} : No of Gale made and sold
Y_{2} :No of Billy made and sold
maximize: $x_{1} p_{1}+x_{2} p_{2}-b x_{1}-c x_{2}$ (income - expenses)
r object to: $Y_{1} \leqslant k$ (Gm it on demand of Vale)
$x_{1}+x_{2} \geqslant a_{1} y_{1}+a_{2} y_{2}$: (We must have enough partide-bondd)
$e_{1} y_{1}+e_{2} Y_{2} \leqslant 280 \cdot 60^{\circ}$ (We have $280 \cdot 60$ minutes of cu ting time)
$f_{y_{2}}+g_{1} y_{1}+g_{2} y_{2} \leqslant 120 \cdot 16 \cdot 60$: (We have 120-16.60 minutes of packing and assembly time available)
$X_{1} \leqslant L$ (Limit on how much we may laminate ourself)
$0 \leqslant x_{1}, x_{2}, y_{1}, y_{2} \quad$ No negative production

Question 4.
a) We stout from $\left(x_{0}, y_{0}\right)=(2,1)$

$$
\nabla f\left(x_{0}, y_{0}\right)=\binom{4}{2}
$$

We, can solve the two -aim. subproblem

$$
\begin{aligned}
& \min \binom{4}{2}^{t}\left(z-\binom{2}{1}\right) \\
& \text { st. } \\
&-1 \leqslant z_{1} \leqslant 2 \\
&-1 \leqslant z_{2} \leqslant 1
\end{aligned}
$$

graphically:

Let's solve the line search problem:

$$
\min _{0 \leq \alpha \leqslant 1} f(x(\alpha), y(\alpha))
$$

where $\quad x(\alpha)=(1-\alpha) x_{0}+\alpha z_{1}^{*}=2(1-\alpha)-\alpha=2-3 \alpha$

$$
\begin{aligned}
y(\alpha) & =(1-\alpha) y_{0}+\alpha z_{i}^{*}=1 \cdot(1-\alpha)-\alpha=1-2 \alpha \\
f(x(\alpha), y(\alpha)) & =(2-3 \alpha)^{2}+(1-2 \alpha)^{2}=4-12 \alpha+9 \alpha^{2}+1-4 \alpha+4 \alpha^{2}= \\
& =13 \alpha^{2}-16 \alpha+5
\end{aligned}
$$

The min is achieved at $\alpha^{*}=\frac{16}{26}=\frac{8}{13} \quad\left(\right.$ eff. $f_{2}^{\prime}(x(\alpha), y(\alpha))=1$

$$
\Rightarrow \text { cat calculate }\left(x\left(\alpha^{*}\right), y\left(\alpha^{*}\right)\right)=\left(\frac{2}{13},-\frac{3}{13}\right) \text {. }
$$

This is, of course, not the optimal solution $\left(x^{*}, y^{*}\right)=(0,0)$ cobjective $f-n$ is positive $\forall(x, y) \neq\left(x^{*}, y^{*}\right)$, while

$$
\left.f^{*}=f\left(x^{*}, y^{*}\right)=0\right) .
$$

Question 4.
b)

The function f is convex, as well as the set $X=\{x \mid A x \leqslant b\}$. Therefore, $\forall x \in X$ we have:

$$
f\left(x_{k}\right)+\nabla f^{t}\left(x_{k}\right)\left(x-x_{k}\right) \leqslant f(x)
$$

Taking the min over $x \in X$ of the both sidles ye lads:

$$
f\left(x_{k}\right)+\min _{x \in X} \nabla f^{t}\left(x_{k}\right)\left(x-x_{k}\right) \leqslant \min _{x \in X} f(x),
$$

Which is the same as

$$
f\left(x_{k}\right)+L_{k}^{*} \leqslant f^{*} \text {,or } f\left(x_{k}\right)-f^{*} \leqslant-L_{k}^{*}
$$

5.a) $x^{*}=(0,0)^{\top}$.
b) The interia penalty to-timen ir

$$
x_{1}+x_{2}-\sigma \ln \left(-x_{1}^{2}+x_{2}\right)-\sigma \ln \left(x_{1}\right) .
$$

In \mathbb{R}_{++}^{2}, thas funtion is in c^{2}. Ditterentiatis sield that

$$
\begin{aligned}
& 1+\frac{\sigma \cdot 2 x_{1}}{-x_{1}^{2}+x_{2}}-\frac{\sigma}{x_{1}}=0 \quad \text { and } \\
& 1-\frac{\sigma}{-x_{1}^{2}+x_{2}}=0
\end{aligned}
$$

that is,

$$
\begin{aligned}
& x_{1}(\sigma)=(-1+\sqrt{1+8 \sigma}) / 4 \\
& x_{2}(\sigma)=\frac{(-1+\sqrt{1+8 \sigma})^{2}}{16}+\sigma
\end{aligned}
$$

As $\sigma \downarrow 0, x_{1}(\sigma) \downarrow 0$ and $x_{2}(\sigma) \downarrow 0$ so

$$
\left(x_{1}, x_{2}\right) \rightarrow(0,0)
$$

6a) The semi-assigmment problem is possible to sole as n simple problems of the form
minimize $\sum_{i} c_{i j} x_{i j}$
whet to $\sum_{i} x_{i j}=1, \quad(j=1, \ldots, n)$

$$
x_{i j} \geq 0, \quad i=1, \ldots, n
$$

The reason is that the problem is linear cine separable corer j. The extreme paints of the feasible sect of the abas problems are all integer; they are of the from $\mathbb{R}^{n} \Rightarrow \bar{x}=(0,0, \ldots, 1,0, \ldots, 0)^{\top}$, where there $1 s \operatorname{exactl}>$ one element with vathe 1, and the remanmis element are vent. Solving the problem using the simplex method, tor example, bields an extreme pint automatically, and hence an optimal problem to the binany problem where " $x_{i j} \geqslant 0$ " ir replaced by " $x_{i j} \in\{0,1\}$ ".
b) $\left(P_{j}\right)$ minimize $\sum_{i=1}^{n} c_{i j} x_{i j}$

$$
\text { subset to }\left\{\begin{aligned}
\sum_{i=1}^{n} x_{i j} & =1, \\
k_{i j} & \geq 0, \quad i=1, \ldots n
\end{aligned}\right.
$$

(Dj) maximize π
subicen to $\pi \leqslant c_{i j}, \quad i=1, \ldots, n$

To solve $\left(D_{j}\right)$, it is clear that the optimal solution is to set

$$
\tilde{n}^{*}=\min _{i}\left\{c_{i j}\right\} .
$$

The opsinatity condition rate, by complementarity, that

$$
x_{i j}^{*} \cdot\left(c_{i j}-\pi^{*}\right)=0, \quad i=1, \ldots, n .
$$

Taking ans i for which $c_{i j}=\pi^{*}$ Lat least one most exist by the definition of $\left.\bar{n}^{*}\right)$, we then seA $x_{i j}^{*}=1$ for th \rightarrow index, say, i^{*}, and $x_{i j}=0$ for all $i \neq i^{*}$. This is a primal-dral solution that satisfies the primal constraints $\left(\sum x_{i j}^{*}=1, x_{j} \geq 0 \forall i\right), d$ l en-ranhes $\left(\frac{2}{n} \leq c_{j}, \forall_{i}\right)$ and complementarity. It $\dot{\Delta}$ theatre optimal. The procedvedescribed is exactly the sec described here. We are done.

Question 7.
Let f^{*} be the optimal value of the problem (P); let further x_{1}^{*}, x_{2}^{*} be two opting solutions to (P).

Since f is convex

$$
\begin{aligned}
& f^{*}=f\left(x_{1}^{*}\right) \geqslant f\left(x_{2}^{*}\right)+\nabla f^{t}\left(x_{2}^{*}\right)\left(x_{1}^{*}-x_{2}^{*}\right)= \\
& \quad=f^{*}+\nabla f^{t}\left(x_{2}^{*}\right)\left(x_{1}^{*}-x_{2}^{*}\right) \\
& \Rightarrow \nabla f^{t}\left(x_{2}^{*}\right)\left(x_{1}^{*}-x_{2}^{*}\right) \leqslant 0
\end{aligned}
$$

On the other hand, since x_{2}^{*} is on optimal solution, and $x_{1}^{*} \in X \Rightarrow$

$$
\begin{equation*}
\nabla f^{t}\left(x_{2}^{*}\right)\left(x_{1}^{*}-x_{2}^{*}\right) \geqslant 0 \text { [optrindity conditions]. } \tag{*}
\end{equation*}
$$

Therefore, $\nabla f^{t}\left(x_{2}^{*}\right)\left(x_{1}^{*}-x_{2}^{*}\right)=0$.
Now, $\quad \forall y \in \mathbb{R}^{n}$:

$$
\begin{aligned}
f(y) & \geqslant f\left(x_{2}^{*}\right)+\nabla f^{t}\left(x_{2}^{*}\right)\left(y-x_{2}^{*}\right) \quad[b y \text { convexity] } \\
& =f^{*}+\nabla f^{t}\left(x_{2}^{*}\right)\left(y-x_{1}^{*}\right)+\nabla f^{t}\left(x_{2}^{*}\right)\left(x_{1}^{*}-x_{2}^{*}\right) \\
& =f\left(x_{1}^{*}\right)+\nabla f^{t}\left(x_{2}^{*}\right)\left(y-x_{1}^{*}\right) \quad
\end{aligned}
$$

Therefore, $\quad \nabla f\left(x_{2}^{*}\right) \in \partial f\left(x_{1}^{*}\right)$!
But $\partial f\left(x_{1}^{*}\right)=\left\{\nabla f\left(x_{1}^{*}\right)\right\} \Rightarrow$
$\nabla f\left(x_{1}^{*}\right)=\nabla f\left(x_{2}^{*}\right)$ for arbitring optimal solutions x_{1}^{*}, x_{2}^{*}

