
Chalmers | GÖTEBORGS UNIVERSITET

Alejandro Russo, Computer Science and Engineering

Concurrent Programming TDA381/DIT390

Friday, March 9, 08.30hs (4 hours), M.

(including example solutions to programming problems)

Alejandro Russo, tel. 0705 110896

• Grading scale (Betygsgränser):

Chalmers: 3 = 20–29 points, 4 = 30–39 points , 5 = 40–50 points
Chalmers ETCS: E = 20–23, D = 24–29, C = 30–37, B = 38–43, A = 44–50
GU: Godkänd 20–39 points, Väl godkänd 40–50 points

Total points on the exam: 50

• Results: within 21 days.

• Permitted materials (Hjälpmedel):

– Dictionary (Ordlista/ordbok)

• Notes:

– Read through the paper first and plan your time.

– Answer in either Swedish or English.

– If a question does not give you all the details you need, you may make reasonable assump-
tions. Your assumptions must be clearly stated. If your solution only works under certain
conditions, state them.

– Start each of the questions on a new page.

– The exact syntax of each programming language you are going to use is not so important
as long as the graders can understand the intended meaning. If you are unsure just put in
an explanation of your notation.

– Points will be deducted for solutions which are unnecessarily complicated.

– As a recommendation, consider spending around 45 minutes per exercise. However, this
is only a recommendation.

– The exams will be shown on Friday March 30 th and Monday 2nd April, 12:00hs - 13:00
hs, Room 5471, EDIT Building, Rännvägen 6B.

1

Question 1. The Problem

Figure 1: Traghetto crossing the Grand Canal

Venice is one of the most romantic cities in Europe. Plenty of channels and bridges, it creates a
unique atmosphere. One of the most traditional methods to cross the Grand Canal in Venice is
the traghetto (see Figure 1). Traghetto is just a small boat that crosses from one side to the other
and is the cheapest means of transportation. For this exercise, we take the crossing between
Fondaco dei Turchi to San Marcuolaen. For simplicity, we assume that

• There is only one traghetto.

• Passengers always want to cross in one direction: from Fondaco dei Turchi to San Mar-
cuolaen.

• The traghetto is initially at San Marcuolaen. Therefore, it needs to firstly reach Fondaco
dei Turchi to get passengers.

• The traghetto has space for three passengers.

• Passengers cannot board the traghetto when it is not in Fondaco dei Turchi. Otherwise,
they will fall into the water!

• Passengers can board the traghetto at the same time. It is important that if a passenger is
too slow to get into the traghetto, the other passengers do not necessarily need to wait to
board the gondola.

• The traghetto only crosses to the other side when it is full of passengers.

• We assume a total number of 3P passengers that want to cross during the day, where P is
a positive natural number.

Your assignment

a) Your task is to implement a simulation of the traghetto using semaphores. The important as-
pect that your simulation should capture is the synchronization of the traghetto crossing and
passengers. Your simulation should only consider what happens with the traghetto during
one day. For this part of the exercise, you can assume that passengers get off “instantly and
at the same time” at the San Marcuolaen station. Thus, you should only focus on the piece
of code related with boarding the traghetto. (5p)

b) import edu.ucdavis.jr.JR;
public class Traghetto {

2

private int total_crossing = 9;

private sem wait_to_board = 0 ;
private sem boarding_done = 0 ;

process Traghetto {
int crossed = 0;
while(crossed < total_crossing){

System.out.println("At San Marcoulaen - Crossing");
JR.nap(1000) ;
System.out.println("Arrived to Fondaco dei Turchi") ;
for (int i=0; i < 3; i++)

V(wait_to_board) ;
for (int i=0; i < 3; i++)

P(boarding_done) ;
JR.nap(300) ;
System.out.println("Arriving to San Marcoulaen with passengers!");
crossed = crossed + 3 ;
System.out.println("Done with this round!");

}
}

process Passenger((int i=0;i<total_crossing;i++)) {
System.out.println("Passenger "+i+" waiting for the Traghetto!");
P(wait_to_board) ;
System.out.println("Boarding "+i);
V(boarding_done) ;
//
}

public static void main(String[] args) {
new Traghetto();

}

}

c) Extend your solution from the previous point to simulate what happens at San Marcuolaen.
For that, you should consider that every passenger must get off before the traghetto turns
back for more passengers. Similarly than for boarding, passengers can get off the traghetto
at the same time. It is important that if a passenger is too slow to get off the traghetto, the
other passengers do not necessarily need to wait to abandon the gondola. (5p)

1. import edu.ucdavis.jr.JR;
public class TraghettoFull {

private int total_crossing = 9;

private sem wait_to_board = 0 ;
private sem boarding_done = 0 ;
private sem wait_to_getoff = 0 ;
private sem got_off = 0 ;

3

process Traghetto {
int crossed = 0;
while(crossed < total_crossing){

System.out.println("At San Marcoulaen - Crossing");
JR.nap(1000) ;
System.out.println("Arrived to Fondaco dei Turchi") ;
for (int i=0; i < 3; i++)

V(wait_to_board) ;
for (int i=0; i < 3; i++)

P(boarding_done) ;
JR.nap(300) ;
System.out.println("Arriving to San Marcoulaen with passengers!");
System.out.println("Start getting off!");
for (int i=0; i < 3; i++)

V(wait_to_getoff) ;
for (int i=0; i < 3; i++)

P(got_off) ;
crossed = crossed + 3 ;
System.out.println("Done with this round!");

}
}

process Passenger((int i=0;i<total_crossing;i++)) {
System.out.println("Passenger "+i+" waiting for the Traghetto!");
P(wait_to_board) ;
System.out.println("Boarding "+i);
V(boarding_done) ;

P(wait_to_getoff) ;
System.out.println("Descending "+i);
V(got_off) ;
System.out.println("Goodbye "+i);
//
}

public static void main(String[] args) {
new TraghettoFull();

}

}

To get full points your solution must fulfill the following criteria:

• You must use semaphores for synchronization or mutual exclusion. No other synchroniza-
tion constructs are allowed.

• You can use either Java or JR. If you choose to use JR, remember that the primitive sem is
for declaring semaphores (e.g. sem s), the primitive P(s) for acquiring semaphore s, and
V(s) for signaling semaphore s.

• Passengers must all execute the same code.

4

Question 2. For this exercise, you should implement a server that stores and handles an unbounded buffer in
JR. For simplicity, we assume that the buffer consists on integer numbers. Your implementation
must serve the operations put buffer and get buffer related to putting and getting numbers
from the buffer, respectively. As usual, if any of these operations cannot be completed because
some condition was not fulfilled (e.g., the buffer is empty), then the thread should block until
that condition is satisfied. Below, you can see an skeleton of a server implementation serving
the mentioned operations.

op void put_buffer(int);
op int get_buffer();

op void buffer(int);
op int pending();

while (true)
{
inni void put_buffer(int x) st pending.length() == 0 {

...
}

[] void put_buffer(int x) st pending.length() > 0 {
...

}

[] int get_buffer() st buffer.length() == 0 {
...

}

[] int get_buffer() st buffer.length() > 0 {
...

}
}

}

The operation buffer represents the buffer of integer numbers. The operation pending is a
queue of threads waiting for the buffer to get populated in order to fetch a number.

Your assignment Your task is to fill in the dots in the skeleton provided above in order to
complete the implementation of the server.

To get full points your solution must fulfill the following criteria:

• You must use forward.

• You must use message passing for synchronization. No other synchronization constructs
are allowed.

(10p)

2. public class UnBuff {

public op void put_buffer(int);
public op int get_buffer();

5

private op void buffer(int);
private op int pending();

private process server {
int y = 0 ;
while (true)
{
inni void put_buffer(int x) st pending.length() == 0 {

send buffer(x);
}

[] void put_buffer(int x) st pending.length() > 0 {
reply ;
inni int pending() {

return x ;
}

}

[] int get_buffer() st buffer.length() == 0 {
forward pending() ;

}

[] int get_buffer() st buffer.length() > 0 {
inni void buffer(int x) {

y = x ;
}

return y ;
}

}
}

private process c {
edu.ucdavis.jr.JR.nap(2000);
System.out.println("Sending ones!");
send put_buffer(5);
send put_buffer(42);

}

private process d {
System.out.println("Getting one:"+get_buffer());
System.out.println("Getting one:"+get_buffer());

}

public static void main(String[] args) {
new UnBuff();

}

}

Question 3. Background

6

The resource/allocation problem is an illustrative example of a common computing problem in
concurrency. We have seen this problem during the lectures. We briefly recap the statement of
the problem.

The problem

A controller controls access to some resources. For simplicity, we assume that we have only one
kind of resources. Clients make requests to take or return any number of those resources. The
controller only grants the resources if there are sufficiently many resources available, otherwise
the client requesting those resources must block. More specifically, clients have the following
interface:

• request(n), which request n copies of the resource and returns a list with the n resources.

• release(rs), which returns the list of resources rs to the controller.

Your assignment

a) Your task is to implement the primitives request and release using transactional mem-
ory. (8p)

b) Can deadlock occur in your solution? If so, show under which situation(s) it might occur.
Otherwise, justify why your solution is deadlock free. (2p)

c) Can starvation occur in your solution? If so, show under which situation(s) it might occur.
Otherwise, justify why your solution is starvation free. (2p)

To get full points your solution must fulfill the following criteria:

• You must use pseudo-code. In particular, you must use

atomic {
statements

}

to introduce a transaction. Command retry is used to abort a transaction and rerun it at
a later time.

• To model lists in pseudo-code, which you need for this exercise, you must use the follow-
ing convention:

– The empty list is written [].
– rs + ys represents the concatenations of lists rs and ys, e.g. [1,2,3]+[4,5,6]

returns the list [1,2,3,4,5,6].
– Function take(n,rs) returns a list with the first n elements of rs, e.g. take(2,[1,2,3])

returns the list [1,2]. If the length of the list rs is shorter than n, take returns the
whole list rs.

– Function drop(n,rs) returns the list rs without the first n elements, e.g. drop(2,[1,2,3])
returns the list [3]. If the n is bigger than the length of the list, drop returns the empty
list.

• You must use transactional memory. No other synchronization constructs are allowed.

7

a) list_integer resources ; // This is a transactional variable

list_integer request (int n) {
list_integer return_list ; // This is a local variable, no considered by the

// transaction.

atomic {
if (length(resources) < n)

retry ;

return_list = take(n, resources)
resources = drop(n,resources)

}

return return_list ;
}

void release (list_integer rs) {

atomic {
resources = rosources + rs ;

}

return ;
}

b) Transactional memory guarantees that there are no deadlocks.

c) It might occur. It depends on the scheduler used by the implementation of the transactional
memory.

Question 4. The Problem You have started working at the company Morzilla. One product of this com-
pany is a web browser. The web browser has a cache where web pages are stored for further
access and to determine if the user has already visit or not a certain webpage. To keep up with
the competitive market, the managers have decided to incorporate a concurrency into the web
browser. Now, every tab in the browser runs in a separate thread.

The previous (sequential) version of the browser has class which implements the access to the
cache. It has the following interface:

class Cache where
public boolean visitURL (URL url) ;
public void addURL (URL url) ;

Function visitURL receives as an argument an URL and returns true when the webpage has
been visited previously. Function addURL is invoked everytime that a web site needs to be added
to the cache. Observe that while visitURL reads from the cache, addURL writes into it.

Your Assignment Your task is to implement a new class ThreadSafeCache which utilizes the
old class but that can be safely used by different threads at the same time. Your class should
have the same interface as the old one. It is important to guarantee that several threads can
obtain information about the presence of an URL in the cache (i.e., by calling visitURL) at

8

the same time. There must be no more than one instance of addURL running at a given time.
Please, do not care about fairness in your solution.

As company policy at Morzilla, all programmers must use Java 5 monitors as synchronization
primitive. Here is a short reference of what you will need from java.util.concurrent.locks.

class ReentrantLock {
public ReentrantLock();
public Condition newCondition();
public void lock();
public void unlock();

}
class Condition {
public void await();
public void signal();
public void signalAll();

}

(8p)

import java.util.concurrent.*;
class ThreadSafePlayList {
private PlayList playlist;
private final Lock lock = new ReentrantLock();
private final Condition waitingToRead = lock.newCondition();
private final Condition waitingToWrite = lock.newCondition();
private int readers = 0;
private int writers = 0;
public ThreadSafeCache() {
cache = new Cache();

}

public int visitURL(URL url) {
int result ;
lock.lock();
while (writers > 0)
waitingToRead.await();

readers++;
lock.unlock();
result = cache.visitURL(url);
lock.lock();
readers--;
if (readers == 0)
waitingToWrite.signal();

lock.unlock();
return result;

}

public void addURL(URL url) {
lock.lock();
while (readers > 0 || writers > 0)
waitingToWrite.await();

writers++;
lock.unlock();

9

cache.addURL(url);
lock.lock();
writers--;
waitingToWrite.signal();
waitingToRead.signalAll();
lock.unlock();

}
}

Question 5. Background

We introduce here a simplified version of a common concurrent pattern used in practice. The
task is to distribute work tasks among a number of workers. A worker is a process that can
perform a computation. Workers can be active or passive. An active worker is a process already
performing computations related to a task(s), while passive is a process waiting to be assigned
to a task(s). We have a server that keeps track of the tasks to be performed and has a fix number
of workers willing to take those tasks. More specifically,

• The initial state of the server is a queue of tasks and a list of passive workers.

• A worker can take more than a single task.

• An active worker becomes passive after finishing with the assigned task(s). Similarly, a
passive worker becomes active when being assigned a task(s).

• The server finishes execution when the queue of tasks is empty and there are no active
workers.

• The server waits for a worker to return a result when the queue is empty or there are no
more passive workers.

• When the task queue is not empty, the server gets a passive worker and assign some chunk
of tasks to perform, i.e., the worker is now active.

How to get a chunk of work from the queue and how to combine results from a single worker
with the result from the others is something specific for each problem. However, in order to not
make you worry about that, we assume that there exists the following functions.

combine_result(Result, Results)
obtain_tasks(Tasks)

Function combine_result takes a newly produce result and a list of previously produced results
and returns a list with the combined results. Function obtain_tasks takes a list of tasks Tasks

and returns a tuple. The first component of the tuple is a chunk of tasks, written Chunk, and the
second component is the list Tasks without the tasks described in Chunk.

Your assignment Your task is to provide an implementation of the server that distributes tasks
among workers in Erlang. For instance, if the server is implemented as the function work_load,
then the initial call to that function must be work_load(Tasks, Passive, ...), where Tasks is
the list of tasks to be computed and Passive is a list of PID of the passive workers. We use
... to denote that there are more arguments in the server that you should think about. The
result of calling work_load must be the result produced when the server finishes execution.
Every worker executes the following code, which might give you a hint about how the code for
work_load looks like.

10

worker() ->
receive {Pid, Tasks} ->

Result = compute(Tasks),
Pid ! {self(), Result},
worker()

end.

Function compute just computes a result with the given tasks. Even though it sounds difficult,
do not be afraid, the solution of this exercise is just a few lines in Erlang! (10p)

-module(server_workers).
-export([work_load/4, worker/0]).

work_load([], _, [], Results) -> Results;

work_load([Task | Tasks], [Worker | Passive], Active, Results) ->
{Chunk, TTasks} = obtain_tasks([Task | Tasks]),
Worker ! {self(), Chunk},
work_load(TTasks, Passive, [Worker | Active], Results).

work_load(Tasks, Passive, Active, Results) ->
receive {Worker, Result} ->

work_load (Tasks,
[Worker | Passive],
lists:delete(Worker, Active),
combine_result(Result, Results))

end;

11

