SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
January 14, 2012, morning, v.
No aids.
Each problem is worth 3 points.
Examiner: Christer Borell, telephone number 0705292322

1. (Black-Scholes model) Let $T>1$ and $K>0$ and consider a financial derivative of European type with payoff

$$
Y=\left(\frac{S(T)}{S(T-1)}-K\right)^{+}
$$

at time of maturity T. Find $\Pi_{Y}(t)$ if $0 \leq t \leq T-1$.

Solution. Since

$$
Y=\frac{1}{S(T-1)}(S(T)-K S(T-1))^{+}
$$

the Black-Scholes call price formula yields

$$
\Pi_{Y}(T-1)=\Phi\left(\frac{\ln \frac{1}{K}+\left(r+\frac{\sigma^{2}}{2}\right)}{\sigma}\right)-K e^{-r} \Phi\left(\frac{\ln \frac{1}{K}+\left(r-\frac{\sigma^{2}}{2}\right)}{\sigma}\right)
$$

Thus if $\tau=T-t$ and $0 \leq t \leq T-1$,

$$
\Pi_{Y}(t)=e^{-r(\tau-1)}\left\{\Phi\left(\frac{\ln \frac{1}{K}+\left(r+\frac{\sigma^{2}}{2}\right)}{\sigma}\right)-K e^{-r} \Phi\left(\frac{\ln \frac{1}{K}+\left(r-\frac{\sigma^{2}}{2}\right)}{\sigma}\right)\right\} .
$$

Alternative solution. If $s=S(t)$ and $G \in N(0,1)$,

$$
\begin{aligned}
\Pi_{Y}(t) & =e^{-r \tau} E\left[\left(\frac{s e^{\left(r-\frac{\sigma^{2}}{2}\right)(T-t)+\sigma(W(T)-W(t))}}{s e^{\left(r-\frac{\sigma^{2}}{2}\right)(T-1-t)+\sigma(W(T-1)-W(t))}}-K\right)^{+}\right] \\
& =e^{-r \tau} E\left[\left(e^{\left(r-\frac{\sigma^{2}}{2}\right)+\sigma(W(T)-W(T-1))}-K\right)^{+}\right]
\end{aligned}
$$

$$
\begin{gathered}
=e^{-r(\tau-1)} e^{-r} E\left[\left(e^{\left(r-\frac{\sigma^{2}}{2}\right)+\sigma G}-K\right)^{+}\right] \\
=e^{-r(\tau-1)} c(0,1, K, 1) \\
=e^{-r(\tau-1)}\left\{\Phi\left(\frac{\ln \frac{1}{K}+\left(r+\frac{\sigma^{2}}{2}\right)}{\sigma}\right)-K e^{-r} \Phi\left(\frac{\ln \frac{1}{K}+\left(r-\frac{\sigma^{2}}{2}\right)}{\sigma}\right)\right\} .
\end{gathered}
$$

2. (Binomial model in T period with $d<r<u$) A financial derivative of European type pays the amount

$$
Y=\ln \frac{S(T)}{S(0)}
$$

at time of maturity T. Find $\Pi_{Y}(0)$.

Solution. Using standard notation,

$$
Y=\ln \frac{S(T-1)}{S(0)}+X_{T}
$$

and, hence,

$$
\Pi_{Y}(T-1)=e^{-r} \ln \frac{S(T-1)}{S(0)}+e^{-r}\left(q_{u} u+q_{d} d\right)
$$

where

$$
q_{u}=\frac{e^{r}-e^{d}}{e^{u}-e^{r}}=1-q_{d}
$$

In a similar way, if $T \geq 2$,

$$
\begin{gathered}
\Pi_{Y}(T-2)=e^{-r}\left(e^{-r} \ln \frac{S(T-2)}{S(0)}+e^{-r}\left(q_{u} u+q_{d} d\right)\right)+e^{-2 r}\left(q_{u} u+q_{d} d\right) \\
=e^{-2 r} \ln \frac{S(T-2)}{S(0)}+2 e^{-2 r}\left(q_{u} u+q_{d} d\right)
\end{gathered}
$$

and by iteration

$$
\Pi_{Y}(0)=T e^{-T r}\left(q_{u} u+q_{d} d\right)
$$

3. A random variable X has the density

$$
f(x)=\left\{\begin{array}{c}
\frac{1}{\pi} \sin ^{2} x \text { if }|x| \leq \pi \\
0 \text { otherwise }
\end{array}\right.
$$

Find the characteristic function of X.

Solution. We have that

$$
\begin{gathered}
c_{X}(\xi)=E\left[e^{i \xi X}\right]=\int_{-\pi}^{\pi} e^{i \xi x} \frac{1}{\pi} \sin ^{2} x d x \\
=\int_{-\pi}^{\pi}(\cos \xi x+i \sin \xi x) \frac{1}{\pi} \sin ^{2} x d x \\
=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos \xi x \sin ^{2} x d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(1-\cos 2 x) \cos \xi x d x \\
=\frac{1}{\pi} \int_{0}^{\pi}(1-\cos 2 x) \cos \xi x d x=\frac{1}{\pi}\left(\frac{\sin \pi \xi}{\xi}-a\right)
\end{gathered}
$$

where

$$
\begin{gathered}
a=\int_{0}^{\pi} \cos 2 x \cos \xi x d x \\
=\frac{1}{2} \int_{0}^{\pi}(\cos (2+\xi) x+\cos (2-\xi) x) d x \\
=\frac{1}{2}\left(\frac{\sin (2+\xi) \pi}{2+\xi}-\frac{\sin (2-\xi) \pi}{2-\xi}\right) \\
=\frac{2 \sin \pi \xi}{4-\xi^{2}} .
\end{gathered}
$$

Thus

$$
c_{X}(\xi)=\frac{1}{\pi}\left(\frac{\sin \xi}{\xi}-\frac{2 \sin \pi \xi}{4-\xi^{2}}\right) .
$$

4. (Black-Scholes model) Suppose $t<T$ and $\tau=T-t$. A simple financial derivative of European type with the payoff function $g \in \mathcal{P}$ has the price

$$
\Pi_{g(S(T))}(t)=e^{-r \tau} E\left[g\left(s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} G}\right)\right]
$$

at time t, where $s=S(t)$ is the stock price at time t and $G \in N(0,1)$.
(a) A European call has the strike price K and determination date T.

Show that the call price at time t equals $s \Phi\left(d_{1}\right)-K e^{-r \tau} \Phi\left(d_{2}\right)$, where

$$
d_{1}=\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{s}{K}+\left(r+\frac{\sigma^{2}}{2}\right) \tau\right)
$$

and $d_{2}=d_{1}-\sigma \sqrt{\tau}$.
(b) Show that the delta of the call in Part (a) equals $\Phi\left(d_{1}\right)$.
5. (Black-Scholes model) Suppose the value of one US dollar at time t equals $\xi(t)$ Swedish crowns and that the price process $(\xi(t))_{0 \leq t \leq T}$ is a geometric Brownian motion with volatility σ. Moreover, denote by r_{f} and r the US and Swedish interest rates, respectively.

Consider the right but not the obligation to buy one US dollar at the price K Swedish crowns at time T. Derive the price in Swedish crowns of this derivative at time t.

