SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
May 23, 2011, morning, v.
No aids.
Each problem is worth 3 points.
Examiner: Christer Borell, telephone number 0705292322

1. (Black-Scholes model) Suppose a and b are positive constants. A derivative of European type pays the amount $Y=a S(T)+\frac{b}{S(T)}$ at time of maturity T. (a) Compute the time t price of the derivative. (b) Compute the time t delta of the derivative.

Solution. (a) Set $s=S(t)$. By the weak dominance principle in the BlackScholes model $\Pi_{S(T)}(t)=s$ and, furthermore, if $\tau=T-t$,

$$
\Pi_{\frac{1}{S(T)}}(t)=e^{-r \tau} E\left[\frac{1}{s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} G}}\right]
$$

where $G \in N(0,1)$. Hence

$$
\begin{gathered}
\Pi_{\frac{1}{S(T)}}(t)=e^{-r \tau}\left(s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau}\right)^{-1} E\left[e^{-\sigma \sqrt{\tau} G}\right]= \\
\frac{1}{s} e^{\left(-2 r+\frac{\sigma^{2}}{2}\right) \tau} e^{\frac{\sigma^{2} \tau}{2}}=\frac{1}{s} e^{\left(\sigma^{2}-2 r\right) \tau}
\end{gathered}
$$

and we get

$$
\Pi_{Y}(t)=a s+\frac{b}{s} e^{\left(\sigma^{2}-2 r\right) \tau}
$$

(b) If $v(t, s)=\Pi_{Y}(t)=a s+\frac{b}{s} e^{\left(\sigma^{2}-2 r\right) \tau}$, then

$$
\Delta(t)=v_{s}^{\prime}(t, S(t))=a-\frac{b}{S^{2}(t)} e^{\left(\sigma^{2}-2 r\right) \tau}
$$

2. (In this problem give only answers; please, do not hand in any solutions!) Let W be a standard Brownian motion and set $U=W^{2}(1)$ and $V=$
$W(1) W(2)+W(3)$. Find (a) $E[U]$ (b) $E[V]$ (c) $E\left[U^{2}\right]$ (d) $E\left[V^{2}\right]$ (e) $E[U V]$ (f) $\operatorname{Cov}(U, V)$ and $(\mathrm{g}) \operatorname{Cor}(U, V)$.

Solution. Set $X=W(1), Y=W(2)-W(1)$, and $Z=W(3)-W(2)$. Then X, Y, and Z are independent, $X, Y, Z \in N(0,1)$, and

$$
U=X^{2}
$$

and

$$
V=X^{2}+X Y+X+Y+Z
$$

(a)
$E[U]=E\left[X^{2}\right]=1$
(b)
$E[V]=E\left[X^{2}\right]+E[X] E[Y]+E[X]+E[Y]+E[Z]=1$
(c)
$E\left[U^{2}\right]=E\left[X^{4}\right]=3$
(d) $E\left[V^{2}\right]=E\left[\{X(X+Y)+(X+Y+Z)\}^{2}\right]=E\left[X^{2}\left(X^{2}+2 X Y+Y^{2}\right)\right]+$
$2 E\left[\left(X^{2}+X Y\right)(X+Y+Z)\right]+E\left[(X+Y+Z)^{2}\right]=\left(E\left[X^{4}\right]+E\left[X^{2} Y^{2}\right]\right)+$ $0+\operatorname{Var}(X+Y+Z)=3+1+3=7$
Alternative solution:
$E\left[V^{2}\right]=E\left[X^{4}\right]+E\left[X^{2}\right] E\left[Y^{2}\right]+E\left[X^{2}\right]+E\left[Y^{2}\right]+E\left[Z^{2}\right]+2 E\left[X^{3}\right] E[Y]+$ $2 E\left[X^{3}\right]+2 E\left[X^{2}\right] E[Y]+2 E\left[X^{2}\right] E[Z]+E\left[X^{2}\right] E[Y]+E[X] E\left[Y^{2}\right]+$ $E[X] E[Y] E[Z]+E[X] E[Y]+E[X] E[Z]+E[Y] E[Z]=3+1+1+$ $1+1+0+0+0+0+0+0+0+0+0+0=7$
(e)
$E[U V]=E\left[X^{4}\right]+E\left[X^{3}\right] E[Y]+E\left[X^{3}\right]+E\left[X^{2}\right] E[Y]+E\left[X^{2}\right] E[Z]=$ $3+0+0+0+0=3$
$\operatorname{Cov}(U, V)=2$
(g)

$$
\operatorname{Cor}(U, V)=\frac{2}{\sqrt{2} \sqrt{6}}=\frac{1}{\sqrt{3}}
$$

3. (Black-Scholes model) Suppose $0<a<b$ and $0 \leq t<T$. A financial derivative of European type pays the amount Y at time of maturity T, where

$$
Y=\left\{\begin{array}{l}
1 \text { if } S(T) \in] a, b[, \\
0 \text { if } S(T) \notin] a, b[.
\end{array}\right.
$$

(a) Find $\Pi_{Y}(t)$. (b) For which value on $S(t)$ is $\Pi_{Y}(t)$ maximal.

Solution. (a) Let $H(x)=$

$$
H_{0}(x)=\left\{\begin{array}{l}
1 \text { if } x>0, \\
0 \text { if } x \leq 0
\end{array} \text { and } H_{1}(x)=\left\{\begin{array}{c}
1 \text { if } x \geq 0 \\
0 \text { if } x<0
\end{array}\right.\right.
$$

Then

$$
Y=H_{0}(S(T)-a)-H_{1}(S(T)-b) .
$$

Moreover, if $s=S(0)$ and $\tau=T-t$,

$$
\begin{gathered}
\Pi_{H_{0}(S(T)-a)}(t)=e^{-r \tau} \int_{-\infty}^{\infty} H_{0}\left(s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau-\sigma \sqrt{\tau} x}-a\right) \varphi(x) d x= \\
e^{-r \tau} \int_{-\infty}^{\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{s}{a}+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)} \varphi(x) d x=e^{-r \tau} \Phi\left(\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{s}{a}+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)\right)
\end{gathered}
$$

and, in a similar way,

$$
\Pi_{H_{1}(S(T)-b)}(t)=e^{-r \tau} \Phi\left(\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{s}{b}+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)\right) .
$$

Thus

$$
\begin{gathered}
\Pi_{Y}(t)= \\
e^{-r \tau}\left(\Phi\left(\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{s}{a}+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)\right)-\Phi\left(\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{s}{b}+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)\right)\right) .
\end{gathered}
$$

(b) Set $\Pi_{Y}(t)=v(s)$. Since $\frac{s}{a}>\frac{s}{b}$ and Φ is strictly increasing, it is obvious that v is a positive function. Moreover, v is continuous and

$$
\lim _{s \rightarrow \infty} v(s)=\lim _{s \rightarrow 0+} v(s)=0
$$

From this we conclude thar v attains a maximum and the derivative of $v(s)$ vanishes at this point.

We have

$$
\begin{gathered}
v^{\prime}(s)= \\
\frac{e^{-r \tau}}{s \sigma \sqrt{\tau}}\left(\varphi\left(\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{s}{a}+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)\right)-\varphi\left(\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{s}{b}+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)\right)\right)
\end{gathered}
$$

and, hence $v^{\prime}(s)=0$ if and only if

$$
\left.\left(\ln \frac{s}{a}+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)^{2}=\left(\ln \frac{s}{b}+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)\right)^{2} .
$$

Thus

$$
\ln \frac{s}{a}+\left(r-\frac{\sigma^{2}}{2}\right) \tau= \pm\left(\ln \frac{s}{b}+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right)
$$

Here the plus sign leads to $a=b$, which is a contradiction, and we must have

$$
2 \ln s=\ln a b-2\left(r-\frac{\sigma^{2}}{2}\right) \tau
$$

or

$$
s=\sqrt{a b} e^{-\left(r-\frac{\sigma^{2}}{2}\right) \tau}
$$

4. (Single-period binomial model and $d<r<u$) Let $g:\left\{S(0) e^{u}, S(0) e^{d}\right\} \rightarrow$ \mathbf{R} be a given function and suppose a derivative of European type pays the amount $Y=g(S(1))$ at time 1. Find a portfolio $h=\left(h_{S}, h_{B}\right)$ which replicates the derivative.
5. Suppose $\alpha \in \mathbf{R}, \sigma>0$ and let

$$
S(t)=S(0) e^{\alpha t+\sigma W(t)}, t \geq 0
$$

be a geometric Brownian motion. Moreover, suppose $0<t_{1}<\ldots<t_{n}$ and $a_{1}<b_{1}, \ldots, a_{n}<b_{n}$. Prove that

$$
\begin{gathered}
P\left[a_{1}<S\left(t_{1}\right)<b_{1}, \ldots, a_{n}<S\left(t_{n}\right)<b_{n}\right] \\
=\int_{A_{1} \times \ldots \times A_{n}} \ldots \prod_{k=1}^{n}\left\{\frac{1}{\sqrt{2 \pi\left(t_{k}-t_{k-1}\right)}} e^{-\frac{\left(x_{k}-x_{k-1}\right)^{2}}{2\left(t_{k}-t_{k-1}\right)}}\right\} d x_{1} \ldots d x_{n}
\end{gathered}
$$

where $x_{0}=0, t_{0}=0$, and

$$
\left.A_{k}=\right] \frac{1}{\sigma}\left(\ln \frac{a_{k}}{S(0)}-\alpha t_{k}\right), \frac{1}{\sigma}\left(\ln \frac{b_{k}}{S(0)}-\alpha t_{k}\right)[, k=1, \ldots, n .
$$

