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SOLUTIONS
OPTIONS AND MATHEMATICS
(CTH[mve095], GU[MMA700])

May 23, 2011, morning, v.
No aids.
Each problem is worth 3 points.
Examiner: Christer Borell, telephone number 0705292322

1. (Black-Scholes model) Suppose a and b are positive constants. A derivative
of European type pays the amount Y = aS(T ) + b

S(T )
at time of maturity T:

(a) Compute the time t price of the derivative. (b) Compute the time t delta
of the derivative.

Solution. (a) Set s = S(t): By the weak dominance principle in the Black-
Scholes model �S(T )(t) = s and, furthermore, if � = T � t;
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(b) If v(t; s) = �Y (t) = as+ b
s
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2. (In this problem give only answers; please, do not hand in any solu-
tions!) Let W be a standard Brownian motion and set U = W 2(1) and V =
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W (1)W (2)+W (3): Find (a) E [U ] (b) E [V ] (c) E [U2] (d) E [V 2] (e) E [UV ]
(f) Cov(U; V ) and (g) Cor(U; V ):

Solution. Set X = W (1); Y = W (2)�W (1); and Z = W (3)�W (2): Then
X; Y; and Z are independent, X; Y; Z 2 N(0; 1); and

U = X2

and
V = X2 +XY +X + Y + Z:

(a)
E [U ] = E [X2] = 1

(b)
E [V ] = E [X2] + E [X]E [Y ] + E [X] + E [Y ] + E [Z] = 1

(c)
E [U2] = E [X4] = 3

(d)E [V 2] = E
�
fX(X + Y ) + (X + Y + Z)g2

�
= E [X2(X2 + 2XY + Y 2)] +

2E [(X2 +XY )(X + Y + Z)]+E [(X + Y + Z)2] = (E [X4]+E [X2Y 2])+
0+Var(X + Y + Z) = 3 + 1 + 3 = 7
Alternative solution:
E [V 2] = E [X4]+E [X2]E [Y 2]+E [X2]+E [Y 2]+E [Z2]+2E [X3]E [Y ] +
2E [X3] + 2E [X2]E [Y ] + 2E [X2]E [Z] + E [X2]E [Y ] + E [X]E [Y 2] +
E [X]E [Y ]E [Z] +E [X]E [Y ] +E [X]E [Z] +E [Y ]E [Z] = 3 + 1 + 1+
1 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 7

(e)
E [UV ] = E [X4] +E [X3]E [Y ] +E [X3] +E [X2]E [Y ] +E [X2]E [Z] =
3 + 0 + 0 + 0 + 0 = 3

(f)
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Cov(U; V ) = 2

(g)
Cor(U; V ) = 2p

2
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3. (Black-Scholes model) Suppose 0 < a < b and 0 � t < T: A �nancial
derivative of European type pays the amount Y at time of maturity T; where

Y =

�
1 if S(T ) 2 ]a; b[ ;
0 if S(T ) =2 ]a; b[ :

(a) Find �Y (t): (b) For which value on S(t) is �Y (t) maximal.

Solution. (a) Let H(x) =

H0(x) =

�
1 if x > 0;
0 if x � 0 and H1(x) =

�
1 if x � 0;
0 if x < 0:

Then
Y = H0(S(T )� a)�H1(S(T )� b):

Moreover, if s = S(0) and � = T � t;
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and, in a similar way,
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(b) Set �Y (t) = v(s): Since s
a
> s

b
and � is strictly increasing, it is obvious

that v is a positive function. Moreover, v is continuous and

lim
s!1

v(s) = lim
s!0+

v(s) = 0:

From this we conclude thar v attains a maximum and the derivative of v(s)
vanishes at this point.
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Here the plus sign leads to a = b; which is a contradiction, and we must have

2 ln s = ln ab� 2(r � �
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4. (Single-period binomial model and d < r < u) Let g :
�
S(0)eu; S(0)ed

	
!

R be a given function and suppose a derivative of European type pays the
amount Y = g(S(1)) at time 1: Find a portfolio h = (hS; hB) which replicates
the derivative.

5. Suppose � 2 R; � > 0 and let

S(t) = S(0)e�t+�W (t); t � 0
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be a geometric Brownian motion. Moreover, suppose 0 < t1 < ::: < tn and
a1 < b1; :::; an < bn: Prove that

P [a1 < S(t1) < b1; :::; an < S(tn) < bn]
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