SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
August 28, 2010, morning V.
No aids.
Each problem is worth 3 points.
Examiner: Christer Borell, telephone number 0705292322

1. Let X be a random variable with strictly positive variance and suppose a, b, c, and d are real numbers such that $b d \neq 0$. Show that

$$
\operatorname{Cor}(a+b X, c+d X)=\frac{b d}{|b d|}
$$

Solution. Set

$$
U=(a+b X)-E[a+b X]=b(X-E[X])
$$

and

$$
V=(c+d X)-E[c+d X]=d(X-E[X])
$$

Now

$$
\begin{aligned}
& \operatorname{Cor}(a+b X, c+d X)=\frac{\operatorname{Cov}(a+b X, c+d X)}{\sqrt{\operatorname{Var}(a+b X)} \sqrt{\operatorname{Var}(c+d X)}} \\
= & \frac{E[U V]}{\sqrt{E\left[U^{2}\right]} \sqrt{E\left[V^{2}\right]}}=\frac{b d E\left[(X-E[X])^{2}\right]}{|b||d| E\left[(X-E[X])^{2}\right]}=\frac{b d}{|b d|} .
\end{aligned}
$$

2. (Black-Scholes model) Suppose $K>0$ and $0=t_{0}<t_{1}<\ldots<t_{n}=T$. A financial derivative of European type pays the amount Y at time of maturity T, where

$$
Y=\sum_{i=1}^{n}\left(S\left(t_{i}\right)-K S\left(t_{i-1}\right)\right)^{+}
$$

Find $\Pi_{Y}(0)$.

Solution. Set

$$
Y_{i}=\left(S\left(t_{i}\right)-K S\left(t_{i-1}\right)\right)^{+}, i=1, \ldots, n
$$

and note that

$$
\Pi_{Y}(0)=\Pi_{\Sigma_{1}^{n} Y_{i}}(0)=\sum_{i=1}^{n} \Pi_{Y i}(0) .
$$

Moreover, for each $i \in\{1, \ldots, n\}$,

$$
\Pi_{Y i}\left(t_{i}\right)=e^{-r\left(T-t_{i}\right)}\left(S\left(t_{i}\right)-K S\left(t_{i-1}\right)\right)^{+} .
$$

Now, if $G \in N(0,1)$, we have by the Black-Scholes call price formula

$$
\begin{aligned}
\Pi_{Y i}\left(t_{i-1}\right) & =e^{-r\left(T-t_{i}\right)}\left\{S\left(t_{i-1}\right) \Phi\left(d_{1}(i)\right)-K S\left(t_{i-1}\right) e^{-r\left(t_{i}-t_{i-1}\right)} \Phi\left(d_{2}(i)\right)\right\} \\
& =e^{-r\left(T-t_{i}\right)} S\left(t_{i-1}\right)\left(\Phi\left(d_{1}(i)\right)-K e^{-r\left(t_{i}-t_{i-1}\right)} \Phi\left(d_{2}(i)\right)\right)
\end{aligned}
$$

where

$$
d_{1}(i)=\frac{1}{\sigma \sqrt{t_{i}-t_{i-1}}}\left(\ln \frac{1}{K}+\left(r+\frac{\sigma^{2}}{2}\right)\left(t_{i}-t_{i-1}\right)\right)
$$

and

$$
d_{2}(i)=\frac{1}{\sigma \sqrt{t_{i}-t_{i-1}}}\left(\ln \frac{1}{K}+\left(r-\frac{\sigma^{2}}{2}\right)\left(t_{i}-t_{i-1}\right)\right) .
$$

Accordingly from this

$$
\Pi_{Y i}(0)=S(0) e^{-r\left(T-t_{i}\right)}\left(\Phi\left(d_{1}(i)\right)-K e^{-r\left(t_{i}-t_{i-1}\right)} \Phi\left(d_{2}(i)\right)\right)
$$

and

$$
\Pi_{Y}(0)=S(0) \sum_{i=1}^{n} e^{-r\left(T-t_{i}\right)}\left(\Phi\left(d_{1}(i)\right)-K e^{-r\left(t_{i}-t_{i-1}\right)} \Phi\left(d_{2}(i)\right)\right)
$$

3. Let $T>0$ and consider two stock price processes

$$
\left\{\begin{array}{l}
S_{1}(t)=S_{1}(0) e^{\alpha_{1} t+\sigma_{1} W_{1}(t)}, 0 \leq t \leq T \\
S_{2}(t)=S_{2}(0) e^{\alpha_{2} t+\sigma_{2} W_{2}(t)}, 0 \leq t \leq T
\end{array}\right.
$$

governed by a bivariate geometric Brownian motion with correlation parameter $\rho \in]-1,1[$. A portfolio is long 1000 shares of the first stock and short $\frac{1000 S_{1}(0)}{S_{2}(0)}$ shares of the second stock. Consequently, the corresponding portfolio \mathcal{A} is of value zero at time zero, that is $V_{\mathcal{A}}(0)=0$. Find $P\left[V_{\mathcal{A}}(T)>0\right]$, $E\left[V_{\mathcal{A}}(T)\right]$, and $E\left[\left(V_{\mathcal{A}}(T)\right)^{2}\right]$.

Solution. We have

$$
V_{\mathcal{A}}(T)=K\left(e^{\alpha_{1} T+\sigma_{1} W_{1}(T)}-e^{\alpha_{2} T+\sigma_{2} W_{2}(T)}\right)
$$

where $K=1000 S_{1}(0)$. Hence

$$
\begin{aligned}
P & {\left[V_{\mathcal{A}}(T)>0\right]=P\left[e^{\alpha_{1} T+\sigma_{1} W_{1}(T)}>e^{\alpha_{2} T+\sigma_{2} W_{2}(T)}\right] } \\
& =P\left[\sigma_{1} W_{1}(T)-\sigma_{2} W_{2}(T)>\left(\alpha_{2}-\alpha_{1}\right) T\right]
\end{aligned}
$$

Set $X_{ \pm}=\sigma_{1} W_{1}(T) \pm \sigma_{2} W_{2}(T) \in N\left(0, \sigma_{ \pm}^{2} T\right)$, where

$$
\sigma_{ \pm}^{2} T=_{d e f} E\left[\left(\sigma_{1} W_{1}(T) \pm \sigma_{2} W_{2}(T)\right)^{2}\right]=\left(\sigma_{1}^{2} \pm 2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}\right) T
$$

Now

$$
P\left[V_{\mathcal{A}}(T)>0\right]=\Phi\left(\frac{\left(\alpha_{2}-\alpha_{1}\right) \sqrt{T}}{\sqrt{\sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}}}\right) .
$$

Moreover, if $G \in N(0,1)$,

$$
E\left[e^{\xi G}\right]=e^{\frac{\xi^{2}}{2}}, \xi \in \mathbf{R}
$$

and it follows that

$$
E\left[V_{\mathcal{A}}(T)\right]=K\left(e^{\left(\alpha_{1}+\frac{1}{2} \sigma_{1}^{2}\right) T}-e^{\left(\alpha_{2}+\frac{1}{2} \sigma_{2}^{2}\right) T}\right)
$$

and

$$
\begin{gathered}
E\left[\left(V_{\mathcal{A}}(T)\right)^{2}\right] \\
=K^{2} E\left[e^{2 \alpha_{1} T+2 \sigma_{1} W_{1}(T)}-2 e^{\left(\alpha_{1}+\alpha_{2}\right) T+\sigma_{1} W_{1}(T)+\sigma_{2} W_{2}(T)}+e^{2 \alpha_{2} T+2 \sigma_{2} W_{2}(T)}\right] \\
=K^{2}\left(e^{2\left(\alpha_{1}+\sigma_{1}^{2}\right) T}-2 e^{\left(\alpha_{1}+\alpha_{2}+\frac{1}{2} \sigma_{1}^{2}+\rho \sigma_{1} \sigma_{2}+\frac{1}{2} \sigma_{2}^{2}\right) T}+e^{2\left(\alpha_{2}+\sigma_{2}^{2}\right) T}\right) .
\end{gathered}
$$

4. Let $W=(W(t))_{t \geq 0}$ be a standard Brownian motion. (a) Prove that $W(s)-W(t) \in N(0,|s-t|)$. (b) Suppose a is a strictly positive real number and set $X=\left(\frac{1}{\sqrt{a}} W(a t)\right)_{t \geq 0}$. Prove that X is a standard Brownian motion.
5. (Dominance Principle) Show that the European call price $c(t, S(t), K, T)$ is a convex function of K.
