SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[M M A700])
May 24, 2010, morning (4 hours), v
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. (Binomial model with 2 periods and $u>r>d$) A European derivative pays the amount Y at time of maturity $T=2$, where

$$
Y=\left\{\begin{array}{c}
0, \text { if } X_{1}=X_{2} \\
1, \text { otherwise }
\end{array}\right.
$$

(a) Find the price $\Pi_{Y}(0)$ of the derivative at time zero. (b) Suppose $\left(h_{S}(t), h_{B}(t)\right)_{t=0}^{T}$ is a self-financing portfolio which replicates the derivative. Find $h_{S}(0)$.

Solution. (a) Set $v(t)=\Pi_{Y}(t)$ and

$$
q_{u}=\frac{e^{r}-e^{d}}{e^{u}-e^{r}}=1-q_{d}
$$

Then

$$
\left\{\begin{array}{l}
v(2)_{\mid X_{1}=u, X_{2}=u}=0 \\
v(2)_{\mid X_{1}=u, X_{2}=d}=1 \\
v(2)_{\mid X_{1}=d, X_{2}=u}=1 \\
v(2)_{\mid X_{1}=u, X_{2}=u}=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{c}
v(1)_{\mid X_{1}=u}=e^{-r}\left(q_{u} \cdot 0+q_{d} \cdot 1\right)=e^{-r} q_{d} \\
v(1)_{\mid X_{1}=d}=e^{-r}\left(q_{u} \cdot 1+q_{d} \cdot 0\right)=e^{-r} q_{u} .
\end{array}\right.
$$

Hence

$$
\Pi_{Y}(0)=v(0)=e^{-r}\left(q_{u} e^{-r} q_{d}+q_{d} e^{-r} q_{u}\right)=2 e^{-2 r} q_{u} q_{d}
$$

(b) We have that $h_{S}(0)=h_{S}(1)$ and $h_{B}(0)=h_{B}(1)$. Hence

$$
\left\{\begin{array}{c}
h_{S}(0) S(0) e^{u}+h_{B}(0) B(0) e^{r}=v(1)_{\mid X_{1}=u} \\
h_{S}(0) S(0) e^{d}+h_{B}(0) B(0) e^{r}=v(1)_{\mid X_{1}=d}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
h_{S}(0) S(0) e^{u}+h_{B}(0) B(0) e^{r}=e^{-r} q_{d} \\
h_{S}(0) S(0) e^{d}+h_{B}(0) B(0) e^{r}=e^{-r} q_{u}
\end{array}\right.
$$

and it follows that

$$
h_{S}(0)=e^{-r} \frac{q_{d}-q_{u}}{S(0)\left(e^{u}-e^{d}\right)} .
$$

2. (In this problem give only answers.) Let $Z(t)=\left(Z_{1}(t), Z_{2}(t)\right), t \geq 0$, be a standard Brownian motion in the plane and suppose $T>0$. Set $U=e^{2 Z_{1}(T)}$ and $V=e^{Z_{1}(T)+Z_{2}(2 T)}$.
(a) Find $E[U], E[V], \operatorname{Var}(U), \operatorname{Var}(V)$, and $\operatorname{Cov}(U, V)$. (b) Find an $a \in \mathbf{R}$ such that $\operatorname{Var}(U-a V) \leq \operatorname{Var}(U-x V)$ for every $x \in \mathbf{R}$?

Solution (to help the understanding of the answers). (a) In the following we will use that

$$
a_{1} Z_{1}\left(t_{1}\right)+a_{2} Z_{2}\left(t_{2}\right) \in N\left(0, a_{1}^{2} t_{1}+a_{2}^{2} t_{2}\right)
$$

for all $a_{1}, a_{2} \in \mathbf{R}$ and $t_{1}, t_{2} \geq 0$. Hence, if $G \in N(0,1)$,

$$
\begin{aligned}
& E[U]=E\left[e^{2 \sqrt{T} G}\right]=e^{2 T} \\
& E[V]=E\left[e^{\sqrt{3 T} G}\right]=e^{\frac{3}{2} T}, \\
& \operatorname{Var}(U)=E\left[U^{2}\right]-(E[U])^{2}=E\left[e^{4 \sqrt{T} G}\right]-e^{4 T}=e^{8 T}-e^{4 T} \\
& \operatorname{Var}(V)=E\left[V^{2}\right]-(E[V])^{2}=E\left[e^{2 \sqrt{3 T} G}\right]-e^{3 T}=e^{6 T}-e^{3 T}, \\
& \operatorname{Cov}(U, V)=E[U V]-E[U] E[V]=E\left[e^{\sqrt{11 T} G}\right]-e^{2 T} e^{\frac{3}{2} T}=e^{\frac{11}{2} T}-e^{\frac{7}{2} T} .
\end{aligned}
$$

(b) Set $U_{0}=U-E[U]$ and $V_{0}=V-E[V]$. We have

$$
\begin{gathered}
f(x)=_{d e f} \operatorname{Var}(U-x V)=E\left[\left(U_{0}-x V_{0}\right)^{2}\right] \\
=E\left[U_{0}^{2}\right]-2 x E\left[U_{0} V_{0}\right]+x^{2} E\left[V_{0}^{2}\right] \\
=\left(x \sqrt{E\left[V_{0}^{2}\right]}-\frac{E\left[U_{0} V_{0}\right]}{\sqrt{E\left[V_{0}^{2}\right]}}\right)^{2}+E\left[U_{0}^{2}\right]-\left(\frac{E\left[U_{0} V_{0}\right]}{\sqrt{E\left[V_{0}^{2}\right]}}\right)^{2} .
\end{gathered}
$$

Hence

$$
\min f=f(a)
$$

where

$$
\begin{aligned}
& a=\frac{\operatorname{Cov}(U, V)}{\operatorname{Var}(V)}=\frac{e^{\frac{11}{2} T}-e^{\frac{7}{2} T}}{e^{6 T}-e^{3 T}} \\
& =\frac{e^{\frac{5}{2} T}-e^{\frac{1}{2} T}}{e^{3 T}-1}=\frac{e^{\frac{1}{2} T}\left(e^{T}+1\right)}{e^{2 T}+e^{T}+1} .
\end{aligned}
$$

3. (Black-Scholes model) Suppose $0<t_{0}<T$ and $K>0$. A financial derivative of European type pays the amount $Y=\left(\frac{S(T)}{S\left(t_{0}\right)}-K\right)^{+}$at time of maturity T. Find the delta of the option at time t if (a) $0<t<t_{0}$ (b) $t_{0}<t<T$.

Solution. We first solve Part (b). Note that

$$
Y=\frac{1}{S\left(t_{0}\right)}\left(S(T)-K S\left(t_{0}\right)\right)^{+}
$$

and, accordingly from this, if $t_{0} \leq t<T$,

$$
\begin{gathered}
\Pi_{Y}(t)=\frac{1}{S\left(t_{0}\right)} c\left(t, S(t), K S\left(t_{0}\right), T\right) \\
=\frac{1}{S\left(t_{0}\right)}\left\{S(t) \Phi\left(d_{1}(t)\right)-K S\left(t_{0}\right) e^{-r(T-t)} \Phi\left(d_{2}(t)\right)\right\}
\end{gathered}
$$

where

$$
d_{1}(t)=\frac{\ln \frac{S(t)}{K S\left(t_{0}\right)}+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}
$$

and

$$
d_{2}(t)=\frac{\ln \frac{S(t)}{K S\left(t_{0}\right)}+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} .
$$

In particular,

$$
\begin{gathered}
\Pi_{Y}\left(t_{0}\right) \\
=\Phi\left(\frac{-\ln K+\left(r+\frac{\sigma^{2}}{2}\right)\left(T-t_{0}\right)}{\sigma \sqrt{T-t_{0}}}\right)-K e^{-r\left(T-t_{0}\right)} \Phi\left(\frac{-\ln K+\left(r-\frac{\sigma^{2}}{2}\right)\left(T-t_{0}\right)}{\sigma \sqrt{T-t_{0}}}\right)
\end{gathered}
$$

and, moreover, from the known delta of a European call we get

$$
\Delta(t)=\frac{1}{S\left(t_{0}\right)} \Phi\left(\frac{\ln \frac{S(t)}{K S\left(t_{0}\right)}+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}\right), \text { if } t_{0}<t<T \text {. }
$$

We next treat Part (a). If $s=S(t)$ and $0<t<t_{0}$,

$$
\Pi_{Y}(t)=e^{-r\left(t_{0}-t\right)} \Pi_{Y}\left(t_{0}\right)
$$

since $\Pi_{Y}\left(t_{0}\right)$ is known at time t. Moreover, $\Pi_{Y}(t)$ is independent of s and we have

$$
\Delta(t)=0, \text { if } 0<t<t_{0} .
$$

4. (Dominance principle) State and prove the Put-Call Parity Theorem.
5. (Black-Scholes model) Consider a European call option on S with strike price K and time of maturity T. Prove that the delta of the call at time $t<T$ equals

$$
\Phi\left(\frac{\ln \frac{S(t)}{K}+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}\right) .
$$

