SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
January 16, 2010, morning (4 hours), v
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. (Binomial model, T periods) Set

$$
Y=\frac{1}{T} \sum_{t=1}^{T} \ln \frac{S(t)}{S(t-1)}
$$

Prove that $E[Y]=d+p_{u}(u-d)$ and $\operatorname{Var}(Y)=\frac{1}{T} p_{u}\left(1-p_{u}\right)(u-d)^{2}$.

Solution. Using standard notation

$$
S(t)=S(t-1) e^{X_{t}}, t=1, \ldots, T
$$

where X_{1}, \ldots, X_{T} are independent and

$$
\left\{\begin{array}{l}
P\left[X_{t}=u\right]=p_{u} \\
P\left[X_{t}=d\right]=p_{d} .
\end{array}\right.
$$

Note that

$$
\begin{gathered}
E\left[X_{t}\right]=p_{u} u+p_{d} d=d+p_{u}(u-d), \\
E\left[X_{t}^{2}\right]=p_{u} u^{2}+p_{d} d^{2},
\end{gathered}
$$

and

$$
\begin{gathered}
\operatorname{Var}\left(X_{t}\right)=p_{u} u^{2}+p_{d} d^{2}-\left(p_{u} u+p_{d} d\right)^{2} \\
=p_{u}\left(1-p_{u}\right)\left(u^{2}+d^{2}\right)-2 p_{u} p_{d} u d=p_{u}\left(1-p_{u}\right)(u-d)^{2} .
\end{gathered}
$$

Now since

$$
Y=\frac{1}{T} \sum_{t=1}^{T} X_{t}
$$

we have that

$$
E[Y]=\frac{1}{T} \sum_{t=1}^{T} E\left[X_{t}\right]=d+p_{u}(u-d)
$$

and

$$
\operatorname{Var}(Y)=\frac{1}{T^{2}} \sum_{t=1}^{T} \operatorname{Var}\left(X_{t}\right)=\frac{1}{T} p_{u}\left(1-p_{u}\right)(u-d)^{2}
$$

2. (Black-Scholes model) Let $a, K, T>0$ be given numbers and consider a simple derivative of European type with time of maturity T and payoff K if $S(T)<a$ and payoff 0 if $S(T) \geq a$. (a) Find the price of the derivative at time $t<T$. (b) Find the delta of the derivative at time $t<T$. (c) Find the vega of the derivative at time $t<T$.

Solution. (a) Set $\tau=T-t$ and let $G \in N(0,1)$. The price of the derivative at time t equals $\pi(t)=v(t, S(t))$, where

$$
\begin{gathered}
v(t, s)=e^{-r \tau} E\left[K 1_{10, a l}\left(s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} G}\right)\right] \\
=e^{-r \tau} K P\left[s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} G}<a\right]=e^{-r \tau} K P\left[G<\frac{\ln \frac{a}{s}-\left(r-\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}\right] \\
=e^{-r \tau} K \Phi\left(\frac{\ln \frac{a}{s}-\left(r-\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}\right) .
\end{gathered}
$$

Hence

$$
\pi(t)=e^{-r \tau} K \Phi\left(\frac{\ln \frac{a}{S(t)}-\left(r-\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}\right)
$$

(b) Let $\varphi=\Phi^{\prime}$. The delta at time t is given by $\left.\frac{\partial v}{\partial s}\right|_{s=S(t)}$, where

$$
\frac{\partial v}{\partial s}=e^{-r \tau} K \varphi\left(\frac{\ln \frac{a}{s}-\left(r-\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}\right) \frac{-1}{\sigma \sqrt{\tau} s} .
$$

Thus the delta equals

$$
-\frac{e^{-r \tau} K}{\sigma \sqrt{\tau} S(t)} \varphi\left(\frac{\ln \frac{a}{S(t)}-\left(r-\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}\right) .
$$

(c) The vega at time t is given by $\frac{\partial v}{\partial \sigma}(t, S(t))$ and equals

$$
\begin{aligned}
& e^{-r \tau} K \varphi\left(\frac{\ln \frac{a}{S(t)}-\left(r-\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}\right)\left\{-\frac{\ln \frac{a}{S(t)}-r \tau}{\sigma^{2} \sqrt{\tau}}+\frac{\sqrt{\tau}}{2}\right\} \\
= & e^{-r \tau} K\left\{-\frac{\ln \frac{a}{S(t)}-r \tau}{\sigma^{2} \sqrt{\tau}}+\frac{\sqrt{\tau}}{2}\right\} \varphi\left(\frac{\ln \frac{a}{S(t)}-\left(r-\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}\right) .
\end{aligned}
$$

3. Suppose $Z=\left(Z_{1}(t), Z_{2}(t)\right)_{t \geq 0}$ is a standard Brownian motion in the plane. Find

$$
E\left[\left|Z_{1}(t)-Z_{2}(t)\right| e^{\left(Z_{1}(t)+Z_{2}(t)\right)^{2}}\right] \text { if } 0 \leq t<\frac{1}{4}
$$

Solution. Note that $\left(Z_{1}(t)+Z_{2}(t), Z_{1}(t)-Z_{2}(t)\right)$ is a Gaussian random vector in the plane such that $Z_{1}(t) \pm Z_{2}(t) \in N(0,2 t)$. Moreover, since

$$
\begin{gathered}
\operatorname{Cov}\left(Z_{1}(t)+Z_{2}(t), Z_{1}(t)-Z_{2}(t)\right)=E\left[\left(Z_{1}(t)+Z_{2}(t)\right)\left(Z_{1}(t)-Z_{2}(t)\right)\right] \\
=E\left[\left(Z_{1}^{2}(t)-Z_{2}^{2}(t)\right)\right]=t-t=0
\end{gathered}
$$

the random variables $Z_{1}(t)+Z_{2}(t)$ and $Z_{1}(t)-Z_{2}(t)$ are independent. Hence, if $0 \leq t<\frac{1}{4}$ and $G \in N(0,1)$,

$$
\begin{gathered}
E\left[\left|Z_{1}(t)-Z_{2}(t)\right| e^{\left(Z_{1}(t)+Z_{2}(t)\right)^{2}}\right] \\
=E\left[\left|Z_{1}(t)-Z_{2}(t)\right|\right] E\left[e^{\left(Z_{1}(t)+Z_{2}(t)\right)^{2}}\right] \\
=E[|\sqrt{2 t} G|] E\left[e^{(\sqrt{2 t} G)^{2}}\right]=\sqrt{2 t} \int_{\mathbf{R}}|x| e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}} \int_{\mathbf{R}} e^{2 t x^{2}} e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}} \\
=2 \sqrt{2 t} \int_{0}^{\infty} x e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}} \int_{\mathbf{R}} e^{-\frac{(1-4 t) x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}} \\
=2 \sqrt{\frac{t}{\pi}} \frac{1}{\sqrt{1-4 t}} \int_{\mathbf{R}} e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}}=2 \sqrt{\frac{t}{\pi(1-4 t)}} .
\end{gathered}
$$

4. Let $W=(W(t))_{t \geq 0}$ be a standard Brownian motion. (a) Prove that $W(s)-W(t) \in N(0,|s-t|)$. (b) Suppose a is a strictly positive real number and set $X=\left(\frac{1}{\sqrt{a}} W(a t)\right)_{t \geq 0}$. Prove that X is a standard Brownian motion.
5. (Black-Scholes model) A simple derivative of European type with the payoff $Y=g(S(T))$ at time of maturity T has the price $v(t, S(t))$ at time $t<T$, where

$$
v(t, s)=e^{-r \tau} E\left[g\left(s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma W(\tau)}\right)\right]
$$

and $\tau=T-t$. Use this formula to find the price of a European styled call with strike price K and time of maturity T.

