SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
August 29, 2009, morning (4 hours), v
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. Find a portfolio consisting of European calls and puts with termination date T such that the value of the portfolio at time T equals

$$
Y=\min (K,|S(T)-K|)
$$

Solution. By drawing a graph of Y as a function $S(T)$ we get $Y=(K-$ $S(T))^{+}+(S(T)-K)^{+}-(S(T)-2 K)^{+}$. Thus a portfolio with long one European put with strike K and expiry T, long one European call with strike K and expiry T, and short one call with strike $2 K$ and expiry T will satisfy the requirements in the text.
2. The Black-Scholes call price equals $c=s \Phi\left(d_{1}\right)-K e^{-r \tau} \Phi\left(d_{2}\right)$, where $\tau=T-t>0$ and $d_{1}=(\sigma \sqrt{\tau})^{-1}\left\{\ln (s / K)+\left(r+\sigma^{2} / 2\right) \tau\right\}=d_{2}+\sigma \sqrt{\tau}$. Show that

$$
\frac{\partial c}{\partial K}=-e^{-r \tau} \Phi\left(d_{2}\right)
$$

Solution. Let $\varphi=\Phi^{\prime}$. We have

$$
\begin{gathered}
\frac{\partial c}{\partial K}=s \varphi\left(d_{1}\right) \frac{\partial d_{1}}{\partial K}-e^{-r \tau} \Phi\left(d_{2}\right)-K e^{-r \tau} \varphi\left(d_{2}\right) \frac{\partial d_{2}}{\partial K} \\
=-e^{-r \tau} \Phi\left(d_{2}\right)+\frac{\partial d_{1}}{\partial K}\left\{s \varphi\left(d_{1}\right)-K e^{-r \tau} \varphi\left(d_{2}\right)\right\} \\
=-e^{-r \tau} \Phi\left(d_{2}\right)+\frac{1}{\sqrt{2 \pi}} \frac{\partial d_{1}}{\partial K}\left\{s e^{-d_{1}^{2} / 2}-K e^{-r \tau} e^{-d_{2}^{2} / 2}\right\}
\end{gathered}
$$

$$
\begin{gathered}
=-e^{-r \tau} \Phi\left(d_{2}\right)+\frac{1}{\sqrt{2 \pi}} \frac{\partial d_{1}}{\partial K}\left\{s e^{-d_{1}^{2} / 2}-K e^{-r \tau} e^{-d_{1}^{2} / 2+d_{1} \sigma \sqrt{\tau}-\sigma^{2} \tau / 2}\right\} \\
=-e^{-r \tau} \Phi\left(d_{2}\right)+\frac{K e^{-d_{1}^{2} / 2}}{\sqrt{2 \pi}} \frac{\partial d_{1}}{\partial K}\left\{s / K-e^{d_{1} \sigma \sqrt{\tau}-\left(r+\sigma^{2} / 2\right) \tau}\right\}=-e^{-r \tau} \Phi\left(d_{2}\right) .
\end{gathered}
$$

3. Let a be a positive real number and suppose the function $u(t, s)$ satisfies the Black-Scholes differential equation

$$
u_{t}^{\prime}+\frac{\sigma^{2} s^{2}}{2} u_{s s}^{\prime \prime}+r s u_{s}^{\prime}-r u=0,0 \leq t<T, s>0
$$

Show that the function $v(t, s)=s^{1-\frac{2 r}{\sigma^{2}}} u\left(t, \frac{a}{s}\right)$ satisfies the Black-Scholes differential equation.

Solution. We have

$$
\begin{gathered}
v_{t}^{\prime}(t, s)=s^{1-\frac{2 r}{\sigma^{2}}} u_{t}^{\prime}\left(t, \frac{a}{s}\right) \\
v_{s}^{\prime}(t, s)=\left(1-\frac{2 r}{\sigma^{2}}\right) s^{-\frac{2 r}{\sigma^{2}}} u\left(t, \frac{a}{s}\right)-a s^{-1-\frac{2 r}{\sigma^{2}}} u_{s}^{\prime}\left(t, \frac{a}{s}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
v_{s s}^{\prime \prime}(t, s)=-\frac{2 r}{\sigma^{2}}\left(1-\frac{2 r}{\sigma^{2}}\right) s^{-1-\frac{2 r}{\sigma^{2}}} u\left(t, \frac{a}{s}\right)-a\left(1-\frac{2 r}{\sigma^{2}}\right) s^{-2-\frac{2 r}{\sigma^{2}}} u_{s}^{\prime}\left(t, \frac{a}{s}\right) \\
+a\left(1+\frac{2 r}{\sigma^{2}}\right) s^{-2-\frac{2 r}{\sigma^{2}}} u_{s}^{\prime}\left(t, \frac{a}{s}\right)+a^{2} s^{-3-\frac{2 r}{\sigma^{2}}} u_{s s}^{\prime \prime}\left(t, \frac{a}{s}\right) \\
=-\frac{2 r}{\sigma^{2}}\left(1-\frac{2 r}{\sigma^{2}}\right) s^{-1-\frac{2 r}{\sigma^{2}}} u\left(t, \frac{a}{s}\right)+a \frac{4 r}{\sigma^{2}} s^{-2-\frac{2 r}{\sigma^{2}}} u_{s}^{\prime}\left(t, \frac{a}{s}\right)+a^{2} s^{-3-\frac{2 r}{\sigma^{2}}} u_{s s}^{\prime \prime}\left(t, \frac{a}{s}\right) .
\end{gathered}
$$

Thus

$$
\begin{gathered}
v_{t}^{\prime}+\frac{\sigma^{2} s^{2}}{2} v_{s s}^{\prime \prime}+r s v_{s}^{\prime}-r v \\
=s^{1-\frac{2 r}{\sigma^{2}}}\left(u_{t}^{\prime}\left(t, \frac{a}{s}\right)-r\left(1-\frac{2 r}{\sigma^{2}}\right) u\left(t, \frac{a}{s}\right)+a 2 r s^{-1} u_{s}^{\prime}\left(t, \frac{a}{s}\right)+a^{2} \frac{\sigma^{2}}{2} s^{-2} u_{s s}^{\prime \prime}\left(t, \frac{a}{s}\right)\right. \\
\left.+r\left(1-\frac{2 r}{\sigma^{2}}\right) u\left(t, \frac{a}{s}\right)-a r s^{-1} u_{s}^{\prime}\left(t, \frac{a}{s}\right)-r u\left(t, \frac{a}{s}\right)\right) \\
=s^{1-\frac{2 r}{\sigma^{2}}}\left(u_{t}^{\prime}\left(t, \frac{a}{s}\right)+\frac{\sigma^{2}}{2}\left(\frac{a}{s}\right)^{2} u_{s s}^{\prime \prime}\left(t, \frac{a}{s}\right)+r \frac{a}{s} u_{s}^{\prime}\left(t, \frac{a}{s}\right)-r u\left(t, \frac{a}{s}\right)\right)=0 .
\end{gathered}
$$

4. Let $\left(X_{n}\right)_{n=1}^{\infty}$ be an i.i.d. such that $P\left[X_{1}=1\right]=P\left[X_{1}=-1\right]=\frac{1}{2}$ and set

$$
Y_{n}=\frac{1}{\sqrt{n}}\left(X_{1}+\ldots+X_{n}\right), n \in \mathbf{N}_{+} .
$$

Prove that $Y_{n} \rightarrow G$, where $G \in N(0,1)$.
5. (Dominance principle) Show that the map

$$
K \rightarrow c(t, S(t), K, T), K>0
$$

is convex.

