SOLUTIONS OPTIONS AND MATHEMATICS (CTH[mve095], GU[MMA700])

May 25, 2009, morning (4 hours), m No aids. Examiner: Christer Borell, telephone number 0705292322 Each problem is worth 3 points.

1. (The one period binomial model, where 0 < d < r < u) Consider a call with the payoff $Y = \frac{1}{2} \mid \frac{S(1)}{S(0)} - \frac{S(0)}{S(1)} \mid$ at the termination date 1. Find the replicating strategy of the derivative at time 0.

Solution: Let S(0) = s and $S(1) = se^X$, where X = u or d. If (h_S, h_B) denotes the replicating strategy at time 0 we have

$$h_S s e^u + h_B B(0) e^r = \sinh u$$

and

$$h_S s e^d + h_B B(0) e^r = \sinh d.$$

From this it follows that

$$h_S s(e^u - e^d) = \sinh u - \sinh d$$

and

$$h_S = \frac{\sinh u - \sinh d}{s(e^u - e^d)}$$

Moreover, we get

$$h_B B(0)(e^{r+u} - e^{r+d}) = e^u \sinh d - e^d \sinh u$$

and

$$h_B = \frac{e^u \sinh d - e^d \sinh u}{B(0)e^r(e^u - e^d)}$$

 $\begin{aligned} ANSWER : & \frac{\sinh u - \sinh d}{S(0)(e^u - e^d)} \ (\text{or} = \frac{1}{2S(0)}(1 + e^{-u - d})) \text{ units of the stock and } \frac{e^u \sinh d - e^d \sinh u}{B(0)e^r(e^u - e^d)} \\ & (\text{or} = -\frac{e^{-r}}{2B(0)}(e^{-u} + e^{-d})) \text{ units of the bond.} \end{aligned}$

2. (Black-Scholes model) Suppose t^*, T_0, T , and δ are positive numbers satisfying the inequalities $T_0 < t^* < T$ and $\delta < 1$. Moreover, suppose $t < t^*$. A stock pays the dividend $\delta S(t^*-)$ at time t^* . Find the price $\Pi_Y(t)$ at time tof a derivative of European type paying the amount

$$Y = (\frac{S(T)}{S(T_0)} - 1)^+$$

at time of maturity T.

Solution. Set s = S(t) and $\tau = T - t$.

To begin with we assume $T_0 \leq t < t^*$. If

$$g(x) = \left(\frac{x}{S(T_0)} - 1\right)^+ = \frac{1}{S(T_0)}(x - S(T_0))^+$$

we know that

$$\Pi_Y(t) = e^{-r\tau} E\left[g((1-\delta)se^{(r-\frac{\sigma^2}{2})\tau + \sigma\sqrt{\tau}G})\right]$$

where $G \in N(0, 1)$. Hence, by the Black-Scholes price formula for a European call,

$$\Pi_Y(t) = \frac{1}{S(T_0)} c(t, (1-\delta)s, S(T_0), T)$$
$$= \frac{1}{S(T_0)} \left\{ (1-\delta)S(t)\Phi(D_1(t)) - S(T_0)e^{-r\tau}\Phi((D_2(t))) \right\}$$

where

$$D_1(t) = \frac{1}{\sigma\sqrt{\tau}} \left(\ln \frac{(1-\delta)S(t)}{S(T_0)} + (r + \frac{\sigma^2}{2})\tau \right)$$

and

$$D_2(t) = \frac{1}{\sigma\sqrt{\tau}} \left(\ln\frac{(1-\delta)S(t)}{S(T_0)} + (r - \frac{\sigma^2}{2})\tau\right).$$

In particular,

$$\Pi_Y(T_0) = (1 - \delta)\Phi(D_1(T_0)) - e^{-r(T - T_0)}\Phi((D_2(T_0)))$$

where

$$D_1(T_0) = \frac{1}{\sigma\sqrt{T - T_0}} (\ln(1 - \delta) + (r + \frac{\sigma^2}{2})(T - T_0))$$

and

$$D_2(T_0) = \frac{1}{\sigma\sqrt{T - T_0}} (\ln(1 - \delta) + (r - \frac{\sigma^2}{2})(T - T_0))$$

Since $\Pi_Y(T_0)$ is non-random (= a numerical constant) we conclude that

$$\Pi_Y(t) = e^{-r(T_0 - t)} \left\{ (1 - \delta) \Phi(D_1(T_0)) - e^{-r(T - T_0)} \Phi((D_2(T_0))) \right\} \text{ if } t < T_0$$

3. (Black-Scholes model) Let a, K, T > 0. A financial derivative of European type pays the amount $Y = (\min(S(T) - K, a))^+$ at time of maturity T. Show that the delta of the derivative is positive and does not exceed

$$\frac{\ln(1+\frac{a}{K})}{\sigma\sqrt{2\pi(T-t)}}$$

at time t < T.

Solution. Note that $Y = (S(T) - K)^+ - (S(T) - (a + K))^+$. The delta of a call is standard (see Problem 4) and we get that the delta of Y at time t equals

$$\Delta_Y(t) = \Phi\left(\frac{1}{\sigma\sqrt{\tau}}\left(\ln\frac{S(t)}{K} + \left(r + \frac{\sigma^2}{2}\right)\tau\right) - \Phi\left(\frac{1}{\sigma\sqrt{\tau}}\left(\ln\frac{S(t)}{a+K} + \left(r + \frac{\sigma^2}{2}\right)\tau\right)\right)$$

where $\tau = T - t$. Hence $\Delta_Y(t) > 0$ since Φ and \ln are increasing in the strict sense. Moreover, if

$$\varphi(u) = \frac{1}{\sqrt{2\pi}} \exp(-u^2/2)$$

we have

$$\Delta_Y(t) = \left\{ \frac{1}{\sigma\sqrt{\tau}} \left(\left(\ln \frac{S(t)}{K} + \left(r + \frac{\sigma^2}{2} \right) \tau \right) - \left(\ln \frac{S(t)}{a+K} + \left(r + \frac{\sigma^2}{2} \right) \tau \right) \right\} \varphi(\xi).$$

for an appropriate $\xi \in \left[\frac{1}{\sigma\sqrt{\tau}}\left(\ln\frac{S(t)}{a+K} + \left(r + \frac{\sigma^2}{2}\right)\tau, \frac{1}{\sigma\sqrt{\tau}}\left(\ln\frac{S(t)}{K} + \left(r + \frac{\sigma^2}{2}\right)\tau\right)\right]\right]$. But $\varphi(\xi) \leq \frac{1}{\sqrt{2\pi}}$ and we get

$$\Delta_Y(t) \le \frac{1}{\sigma\sqrt{\tau}} (\ln(a+K) - \ln K) \frac{1}{\sqrt{2\pi}}$$

and the result is immediate.

4. (Black-Scholes model) Suppose t < T and $\tau = T - t$. A simple financial derivative of European type with the payoff function $g \in \mathcal{P}$ has the price

$$\Pi_{g(S(T))}(t) = e^{-r\tau} E\left[g(se^{(r-\frac{\sigma^2}{2})\tau + \sigma\sqrt{\tau}G})\right]$$

at time t, where s = S(t) is the stock price at time t and $G \in N(0, 1)$.

(a) A European call has the strike price K and determination date T. Show that the call price equals $s\Phi(d_1) - Ke^{-r\tau}\Phi(d_2)$, where

$$d_1 = \frac{1}{\sigma\sqrt{\tau}} \left(\ln\frac{s}{K} + \left(r + \frac{\sigma^2}{2}\right)\tau\right)$$

and $d_2 = d_1 - \sigma \sqrt{\tau}$.

(b) Show that the delta of the call in Part (a) equals $\Phi(d_1)$.

5. (Black-Scholes model) A European call on a US dollar has the strike strike price K and determination date T. Derive the price of the derivative at time t, if the US interest rate equals r_f and the volatility of the exchange rate process, quoted as crowns per dollar, equals σ . As usual the Swedish interest rate is denoted by r.