SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
May 25, 2009, morning (4 hours), m
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. (The one period binomial model, where $0<d<r<u$) Consider a call with the payoff $Y=\frac{1}{2}\left|\frac{S(1)}{S(0)}-\frac{S(0)}{S(1)}\right|$ at the termination date 1. Find the replicating strategy of the derivative at time 0 .

Solution: Let $S(0)=s$ and $S(1)=s e^{X}$, where $X=u$ or d. If $\left(h_{S}, h_{B}\right)$ denotes the replicating strategy at time 0 we have

$$
h_{S} s e^{u}+h_{B} B(0) e^{r}=\sinh u
$$

and

$$
h_{S} s e^{d}+h_{B} B(0) e^{r}=\sinh d .
$$

From this it follows that

$$
h_{S} s\left(e^{u}-e^{d}\right)=\sinh u-\sinh d
$$

and

$$
h_{S}=\frac{\sinh u-\sinh d}{s\left(e^{u}-e^{d}\right)}
$$

Moreover, we get

$$
h_{B} B(0)\left(e^{r+u}-e^{r+d}\right)=e^{u} \sinh d-e^{d} \sinh u
$$

and

$$
h_{B}=\frac{e^{u} \sinh d-e^{d} \sinh u}{B(0) e^{r}\left(e^{u}-e^{d}\right)} .
$$

ANSWER: $\frac{\sinh u-\sinh d}{S(0)\left(e^{u}-e^{d}\right)}\left(\right.$ or $\left.=\frac{1}{2 S(0)}\left(1+e^{-u-d}\right)\right)$ units of the stock and $\frac{e^{u} \sinh d-e^{d} \sinh u}{B(0) e^{r}\left(e^{u}-e^{d}\right)}$ (or $\left.=-\frac{e^{-r}}{2 B(0)}\left(e^{-u}+e^{-d}\right)\right)$ units of the bond.
2. (Black-Scholes model) Suppose t^{*}, T_{0}, T, and δ are positive numbers satisfying the inequalities $T_{0}<t^{*}<T$ and $\delta<1$. Moreover, suppose $t<t^{*}$. A stock pays the dividend $\delta S\left(t^{*}-\right)$ at time t^{*}. Find the price $\Pi_{Y}(t)$ at time t of a derivative of European type paying the amount

$$
Y=\left(\frac{S(T)}{S\left(T_{0}\right)}-1\right)^{+}
$$

at time of maturity T.

Solution. Set $s=S(t)$ and $\tau=T-t$.
To begin with we assume $T_{0} \leq t<t^{*}$. If

$$
g(x)=\left(\frac{x}{S\left(T_{0}\right)}-1\right)^{+}=\frac{1}{S\left(T_{0}\right)}\left(x-S\left(T_{0}\right)\right)^{+}
$$

we know that

$$
\Pi_{Y}(t)=e^{-r \tau} E\left[g\left((1-\delta) s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} G}\right)\right]
$$

where $G \in N(0,1)$. Hence, by the Black-Scholes price formula for a European call,

$$
\begin{gathered}
\Pi_{Y}(t)=\frac{1}{S\left(T_{0}\right)} c\left(t,(1-\delta) s, S\left(T_{0}\right), T\right) \\
=\frac{1}{S\left(T_{0}\right)}\left\{(1-\delta) S(t) \Phi\left(D_{1}(t)\right)-S\left(T_{0}\right) e^{-r \tau} \Phi\left(\left(D_{2}(t)\right)\right\}\right.
\end{gathered}
$$

where

$$
D_{1}(t)=\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{(1-\delta) S(t)}{S\left(T_{0}\right)}+\left(r+\frac{\sigma^{2}}{2}\right) \tau\right)
$$

and

$$
D_{2}(t)=\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{(1-\delta) S(t)}{S\left(T_{0}\right)}+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right) .
$$

In particular,

$$
\Pi_{Y}\left(T_{0}\right)=(1-\delta) \Phi\left(D_{1}\left(T_{0}\right)\right)-e^{-r\left(T-T_{0}\right)} \Phi\left(\left(D_{2}\left(T_{0}\right)\right)\right.
$$

where

$$
D_{1}\left(T_{0}\right)=\frac{1}{\sigma \sqrt{T-T_{0}}}\left(\ln (1-\delta)+\left(r+\frac{\sigma^{2}}{2}\right)\left(T-T_{0}\right)\right)
$$

and

$$
D_{2}\left(T_{0}\right)=\frac{1}{\sigma \sqrt{T-T_{0}}}\left(\ln (1-\delta)+\left(r-\frac{\sigma^{2}}{2}\right)\left(T-T_{0}\right)\right) .
$$

Since $\Pi_{Y}\left(T_{0}\right)$ is non-random ($=$ a numerical constant) we conclude that

$$
\Pi_{Y}(t)=e^{-r\left(T_{0}-t\right)}\left\{(1-\delta) \Phi\left(D_{1}\left(T_{0}\right)\right)-e^{-r\left(T-T_{0}\right)} \Phi\left(\left(D_{2}\left(T_{0}\right)\right)\right\} \text { if } t<T_{0} .\right.
$$

3. (Black-Scholes model) Let $a, K, T>0$. A financial derivative of European type pays the amount $Y=(\min (S(T)-K, a))^{+}$at time of maturity T. Show that the delta of the derivative is positive and does not exceed

$$
\frac{\ln \left(1+\frac{a}{K}\right)}{\sigma \sqrt{2 \pi(T-t)}}
$$

at time $t<T$.

Solution. Note that $Y=(S(T)-K)^{+}-(S(T)-(a+K))^{+}$. The delta of a call is standard (see Problem 4) and we get that the delta of Y at time t equals

$$
\Delta_{Y}(t)=\Phi\left(\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{S(t)}{K}+\left(r+\frac{\sigma^{2}}{2}\right) \tau\right)-\Phi\left(\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{S(t)}{a+K}+\left(r+\frac{\sigma^{2}}{2}\right) \tau\right)\right.\right.
$$

where $\tau=T-t$. Hence $\Delta_{Y}(t)>0$ since Φ and \ln are increasing in the strict sense. Moreover, if

$$
\varphi(u)=\frac{1}{\sqrt{2 \pi}} \exp \left(-u^{2} / 2\right)
$$

we have

$$
\Delta_{Y}(t)=\left\{\frac{1}{\sigma \sqrt{\tau}}\left(\left(\ln \frac{S(t)}{K}+\left(r+\frac{\sigma^{2}}{2}\right) \tau\right)-\left(\ln \frac{S(t)}{a+K}+\left(r+\frac{\sigma^{2}}{2}\right) \tau\right)\right)\right\} \varphi(\xi) .
$$

for an appropriate $\xi \in] \frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{S(t)}{a+K}+\left(r+\frac{\sigma^{2}}{2}\right) \tau, \frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{S(t)}{K}+\left(r+\frac{\sigma^{2}}{2}\right) \tau\right)[\right.$.
But $\varphi(\xi) \leq \frac{1}{\sqrt{2 \pi}}$ and we get

$$
\Delta_{Y}(t) \leq \frac{1}{\sigma \sqrt{\tau}}(\ln (a+K)-\ln K) \frac{1}{\sqrt{2 \pi}}
$$

and the result is immediate.
4. (Black-Scholes model) Suppose $t<T$ and $\tau=T-t$. A simple financial derivative of European type with the payoff function $g \in \mathcal{P}$ has the price

$$
\Pi_{g(S(T))}(t)=e^{-r \tau} E\left[g\left(s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} G}\right)\right]
$$

at time t, where $s=S(t)$ is the stock price at time t and $G \in N(0,1)$.
(a) A European call has the strike price K and determination date T. Show that the call price equals $s \Phi\left(d_{1}\right)-K e^{-r \tau} \Phi\left(d_{2}\right)$, where

$$
d_{1}=\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{s}{K}+\left(r+\frac{\sigma^{2}}{2}\right) \tau\right)
$$

and $d_{2}=d_{1}-\sigma \sqrt{\tau}$.
(b) Show that the delta of the call in Part (a) equals $\Phi\left(d_{1}\right)$.
5. (Black-Scholes model) A European call on a US dollar has the strike strike price K and determination date T. Derive the price of the derivative at time t, if the US interest rate equals r_{f} and the volatility of the exchange rate process, quoted as crowns per dollar, equals σ. As usual the Swedish interest rate is denoted by r.

