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SOLUTIONS
OPTIONS AND MATHEMATICS
(CTH[mve095], GU[MMA700])

August 30, 2008, morning (4 hours), V
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. (Black-Scholes model) A derivative of European type pays the amount
Y = S(T )

S(T=2)
at time of maturity T: Find �Y (0):

Solution. For any t 2 [0; T ] and real number a; �aS(T )(t) = aS(t) and, hence,
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Accordingly from this,
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2. Suppose Z = (Z1(t); Z2(t))t�0 is a standard Brownian motion in the plane.
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if t � 0:

Solution. Let t � 0 be �xed. Since (Z1(t); Z2(t)) has the same distribution
as
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t(Z1(1); Z2(1));
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3. (Black-Scholes model) Suppose K is a positive real number and consider
a simple derivative of European type with the payo¤

Y = (
1

S(T )
�K)+

at time of maturity T: Moreover, suppose 0 < t� < T and 0 < � < 1: Find
�Y (0) if the stock pays the dividend �S(t��) at time t�:

Solution. Let s = S(0) and suppose G 2 N(0; 1): We have
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where L = (1� �)sK: Here
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4. Prove that there exists an arbitrage portfolio in the single-period binomial
model if and only if

r =2 ]d; u[ :

5. (Black-Scholes model) Consider a European call on a stock with price
process (S(t))t�0. If K denotes strike price and T time of maturity, the
Black-Scholes price of the call at time t < T equals

c(t; S(t); K; T )) = s�(d1)�Ke�r��(d2);

where � = T � t and

d1 = d2 + �
p
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�
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�
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(a) Find the delta of the call.
(b) How is the call price formula changed if the stock price pays the

dividend D at time t� 2 ]t; T [ ; where D is a �xed amount known at time t?


