SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
August 30, 2008, morning (4 hours), V
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. (Black-Scholes model) A derivative of European type pays the amount $Y=\frac{S(T)}{S(T / 2)}$ at time of maturity T. Find $\Pi_{Y}(0)$.

Solution. For any $t \in[0, T]$ and real number $a, \Pi_{a S(T)}(t)=a S(t)$ and, hence,

$$
\begin{gathered}
\Pi_{Y}(T / 2)=\Pi_{\frac{1}{S(T / 2)} S(T)}(T / 2)=\frac{1}{S(T / 2)} \Pi_{S(T)}(T / 2) \\
=\frac{1}{S(T / 2)} S(T / 2)=1 .
\end{gathered}
$$

Accordingly from this,

$$
\Pi_{Y}(0)=e^{-\frac{r T}{2}}
$$

2. Suppose $Z=\left(Z_{1}(t), Z_{2}(t)\right)_{t \geq 0}$ is a standard Brownian motion in the plane. Find $E\left[\sqrt{Z_{1}^{2}(t)+Z_{2}^{2}(t)}\right]$ if $t \geq 0$.

Solution. Let $t \geq 0$ be fixed. Since $\left(Z_{1}(t), Z_{2}(t)\right)$ has the same distribution as $\sqrt{t}\left(Z_{1}(1), Z_{2}(1)\right)$,

$$
\begin{aligned}
& E\left[\sqrt{Z_{1}^{2}(t)+Z_{2}^{2}(t)}\right]=E\left[\sqrt{t\left(Z_{1}^{2}(1)+Z_{2}^{2}(1)\right)}\right] \\
= & \sqrt{t} \iint_{\mathbf{R}^{2}} \sqrt{x^{2}+y^{2}} e^{-\frac{x^{2}+y^{2}}{2}} \frac{d x d y}{2 \pi}=\left[\begin{array}{c}
\text { polar } \\
\text { coordinates }
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
=\sqrt{t} \int_{0}^{\infty} \int_{0}^{2 \pi} r^{2} e^{-\frac{r^{2}}{2}} \frac{d r d \theta}{2 \pi}=\sqrt{t} \int_{0}^{\infty} r^{2} e^{-\frac{r^{2}}{2}} d r=\left[\begin{array}{c}
\text { partial } \\
\text { integration }
\end{array}\right] \\
=\sqrt{t} \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} d r=\sqrt{\frac{\pi t}{2}}
\end{gathered}
$$

3. (Black-Scholes model) Suppose K is a positive real number and consider a simple derivative of European type with the payoff

$$
Y=\left(\frac{1}{S(T)}-K\right)^{+}
$$

at time of maturity T. Moreover, suppose $0<t^{*}<T$ and $0<\delta<1$. Find $\Pi_{Y}(0)$ if the stock pays the dividend $\delta S\left(t^{*}-\right)$ at time t^{*}.

Solution. Let $s=S(0)$ and suppose $G \in N(0,1)$. We have

$$
\begin{aligned}
\Pi_{Y}(0) & =e^{-r T} E\left[\left(\frac{1}{(1-\delta) s e^{\left(r-\frac{\sigma^{2}}{2}\right) T+\sigma \sqrt{T} G}}-K\right)^{+}\right] \\
& =\frac{e^{-r T}}{(1-\delta) s} E\left[\left(e^{-\left(r-\frac{\sigma^{2}}{2}\right) T-\sigma \sqrt{T} G}-L\right)^{+}\right]
\end{aligned}
$$

where $L=(1-\delta) s K$. Here

$$
\begin{aligned}
& E\left[\left(e^{-\left(r-\frac{\sigma^{2}}{2}\right) T-\sigma \sqrt{T} G}-L\right)^{+}\right]=\int_{-\infty}^{-\frac{1}{\sigma \sqrt{T}}\left(\ln L+\left(r-\frac{\sigma^{2}}{2}\right) T\right)}\left(e^{-\left(r-\frac{\sigma^{2}}{2}\right) T-\sigma \sqrt{T} x}-L\right) e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}} \\
& \quad=e^{\left(\sigma^{2}-r\right) T} \int_{-\infty}^{-\frac{1}{\sigma \sqrt{T}}\left(\ln L+\left(r-\frac{\sigma^{2}}{2}\right) T\right)} e^{-\frac{1}{2}(x+\sigma \sqrt{T})^{2} \frac{d x}{\sqrt{2 \pi}}-L \Phi\left(-\frac{1}{\sigma \sqrt{T}}\left(\ln L+\left(r-\frac{\sigma^{2}}{2}\right) T\right)\right)} \\
& =e^{\left(\sigma^{2}-r\right) T} \Phi\left(-\frac{1}{\sigma \sqrt{T}}\left(\ln L+\left(r-\frac{3}{2} \sigma^{2}\right) T\right)\right)-L \Phi\left(-\frac{1}{\sigma \sqrt{T}}\left(\ln L+\left(r-\frac{\sigma^{2}}{2}\right) T\right)\right) .
\end{aligned}
$$

Thus
$\Pi_{Y}(0)=\frac{e^{\left(\sigma^{2}-2 r\right) T}}{(1-\delta) s} \Phi\left(-\frac{1}{\sigma \sqrt{T}}\left(\ln L+\left(r-\frac{3}{2} \sigma^{2}\right) T\right)\right)-e^{-r T} K \Phi\left(-\frac{1}{\sigma \sqrt{T}}\left(\ln L+\left(r-\frac{\sigma^{2}}{2}\right) T\right)\right)$.
4. Prove that there exists an arbitrage portfolio in the single-period binomial model if and only if

$$
r \notin] d, u[.
$$

5. (Black-Scholes model) Consider a European call on a stock with price process $(S(t))_{t \geq 0}$. If K denotes strike price and T time of maturity, the Black-Scholes price of the call at time $t<T$ equals

$$
c(t, S(t), K, T))=s \Phi\left(d_{1}\right)-K e^{-r \tau} \Phi\left(d_{2}\right),
$$

where $\tau=T-t$ and

$$
d_{1}=d_{2}+\sigma \sqrt{\tau}=\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{S(t)}{K}+\left(r+\frac{\sigma^{2}}{2}\right) \tau\right)
$$

(a) Find the delta of the call.
(b) How is the call price formula changed if the stock price pays the dividend D at time $\left.t^{*} \in\right] t, T[$, where D is a fixed amount known at time t ?

