SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
May 24, 2008, morning (4 hours), v
No aids.
Examiner: Torbjörn Lundh, telephone number 0731526320
Each problem is worth 3 points.

1. (Binomial model) Suppose $T=3, u>r>0$, and $d=-u$. A derivative of European type has the payoff Y at time of maturity T, where

$$
Y=\left\{\begin{array}{l}
1, \text { if } X_{1}=X_{2}=X_{3} \\
0, \text { otherwise }
\end{array}\right.
$$

Find $\Pi_{Y}(0)$ (the answer may contain the martingale probabilities q_{u} and q_{d}, which must, however, be defined explicitely).

Solution. We have

$$
q_{u}=\frac{e^{r}-e^{-u}}{e^{u}-e^{-u}} \text { and } q_{d}=\frac{e^{u}-e^{r}}{e^{u}-e^{-u}}
$$

Introducing $\Pi_{Y}(t)=v(t)$, it follows that

$$
\left\{\begin{array}{c}
v(2)_{\mid X_{1}=u, X_{2}=u}=e^{-r}\left(q_{u} \cdot 1+q_{d} \cdot 0\right)=e^{-r} q_{u} \\
v(2)_{\mid X_{1}=u, X_{2}=d}=e^{-r}\left(q_{u} \cdot 0+q_{d} \cdot 0\right)=0 \\
v(2)_{\mid X_{1}=d, X_{2}=u}=e^{-r}\left(q_{u} \cdot 0+q_{d} \cdot 0\right)=0 \\
v(2)_{\mid X_{1}=d, X_{2}=d}=e^{-r}\left(q_{u} \cdot 0+q_{d} \cdot 1\right)=e^{-r} q_{d}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
v(1)_{\mid X_{1}=u}=e^{-r}\left(q_{u} e^{-r} q_{u}+q_{d} \cdot 0\right)=e^{-2 r} q_{u}^{2} \\
v(1)_{\mid X_{1}=d}=e^{-r}\left(q_{u} \cdot 0+q_{d} e^{-r} q_{d}\right)=e^{-2 r} q_{d}^{2}
\end{array}\right.
$$

Thus

$$
v(0)=e^{-r}\left(q_{u} e^{-2 r} q_{u}^{2}+q_{d} e^{-2 r} q_{d}^{2}\right)=e^{-3 r}\left(q_{u}^{3}+q_{d}^{3}\right)
$$

Alternative solution. We have $Y=1_{\left\{S(0) e^{3 u}, S(0) e^{-3 u}\right\}}(S(3))$ and the derivative is simple. Hence

$$
\begin{gathered}
\Pi_{Y}(0)=e^{-3 r} \sum_{k=0}^{3}\binom{3}{k} q_{u}^{k} q_{d}^{3-k} 1_{\left\{S(0) e^{3 u}, S(0) e^{-3 u}\right\}}\left(S(0) e^{k u+(3-k)(-u)}\right) \\
=e^{-3 r} \sum_{k \in\{0,3\}}\binom{3}{k} q_{u}^{k} q_{d}^{3-k}=e^{-3 r}\left(q_{u}^{3}+q_{d}^{3}\right) .
\end{gathered}
$$

2. Suppose $Z=\left(Z_{1}(t), Z_{2}(t)\right)_{t \geq 0}$ is a standard Brownian motion in the plane and define $R(t)=|Z(t)|=\sqrt{Z_{1}^{2}(t)+Z_{2}^{2}(t)}, t \geq 0$. Find $E\left[e^{\xi R^{2}(t)}\right]$ if $t>0$ and $\xi<\frac{1}{2 t}$.

Solution. Suppose $t>0, \xi<\frac{1}{2 t}$, and $G \in N(0,1)$. Then

$$
\begin{gathered}
E\left[e^{\xi R^{2}(t)}\right]=E\left[e^{\xi Z_{1}^{2}(t)} e^{\xi Z_{2}^{2}(t)}\right]=E\left[e^{\xi Z_{1}^{2}(t)}\right] E\left[e^{\xi Z_{2}^{2}(t)}\right] \\
=\left(E\left[e^{\xi t G^{2}}\right]\right)^{2}
\end{gathered}
$$

and setting $\eta=\xi t$,

$$
\begin{gathered}
E\left[e^{\eta G^{2}}\right]=\int_{-\infty}^{\infty} e^{\eta x^{2}} e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}} \\
=\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}(1-2 \eta)} \frac{d x}{\sqrt{2 \pi}}=\int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} \frac{d y}{\sqrt{2 \pi(1-2 \eta)}} \\
=\frac{1}{\sqrt{1-2 \eta}}
\end{gathered}
$$

Hence,

$$
E\left[e^{\xi R^{2}(t)}\right]=\frac{1}{1-2 \xi t}
$$

3. (Black-Scholes model) A derivative of European type pays the amount

$$
Y=1+S(T) \ln S(T)
$$

at time of maturity T. (a) Find $\Pi_{Y}(t)$. (b) Find a hedging portfolio of the derivative at time t.

Solution. (a) If $s=S(t), \tau=T-t$, and $G \in N(0,1)$, then

$$
\begin{gathered}
\Pi_{Y}(t)=e^{-r \tau} E\left[1+s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} G}\left\{\ln s+\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} G\right\}\right] \\
=e^{-r \tau}+s\left\{\ln s+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right\} e^{-\frac{\sigma^{2}}{2} \tau} E\left[e^{\sigma \sqrt{\tau} G}\right]+s \sigma \sqrt{\tau} E\left[G e^{-\frac{\sigma^{2}}{2} \tau+\sigma \sqrt{\tau} G}\right] \\
=e^{-r \tau}+s\left\{\ln s+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right\}+s \sigma \sqrt{\tau} \int_{-\infty}^{\infty} x e^{-\frac{\sigma^{2}}{2} \tau+\sigma \sqrt{\tau} x-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}} \\
=e^{-r \tau}+s\left\{\ln s+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right\}+s \sigma \sqrt{\tau} \int_{-\infty}^{\infty} x e^{-\frac{(x-\sigma \sqrt{\tau})^{2}}{2}} \frac{d x}{\sqrt{2 \pi}}= \\
=e^{-r \tau}+s\left\{\ln s+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right\}+s \sigma \sqrt{\tau} \int_{-\infty}^{\infty}(y+\sigma \sqrt{\tau}) e^{-\frac{y^{2}}{2}} \frac{d x}{\sqrt{2 \pi}} \\
=e^{-r \tau}+s\left\{\ln s+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right\}+s \sigma^{2} \tau \\
=e^{-r \tau}+s \ln s+s\left(r+\frac{\sigma^{2}}{2}\right) \tau \\
=e^{-r \tau}+S(t) \ln S(t)+S(t)\left(r+\frac{\sigma^{2}}{2}\right) \tau
\end{gathered}
$$

(b) A portfolio with

$$
\begin{gathered}
h_{S}(t)=\left(\frac{\partial}{\partial s}\left\{e^{-r \tau}+s \ln s+s\left(r+\frac{\sigma^{2}}{2}\right) \tau\right\}\right)_{\mid s=S(t)} \\
=1+\left(r+\frac{\sigma^{2}}{2}\right) \tau+\ln S(t)
\end{gathered}
$$

units of the stock and

$$
\begin{gathered}
h_{B}(t) \\
=\left(e^{-r \tau}+S(t) \ln S(t)+S(t)\left(r+\frac{\sigma^{2}}{2}\right) \tau-S(t)\left(1+\left(r+\frac{\sigma^{2}}{2}\right) \tau+\ln S(t)\right)\right) / B(t) \\
=\left(e^{-r \tau}-S(t)\right) / B(t)
\end{gathered}
$$

units of the bond is a hedging portfolio at time t.
4. (Dominance Principle) State and prove the Put-Call Parity relation.
5. (Dominance Principle) Suppose $t_{0}<t^{*}<T$ and let D be a positive number, which is known at time t_{0}. Now consider an American put with strike K and time of maturity T, where the underlying stock pays the dividend D at time t^{*} and

$$
D \geq K\left(e^{r\left(t^{*}-t_{0}\right)}-1\right)
$$

Prove that it is not optimal to exercise the put in the time interval $] t_{0}, t^{*}[$.

