SOLUTIONS: OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MAN690])
January 19, 2008, morning (4 hours), v
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. (Black-Scholes model) A derivative of European type pays the amount

$$
Y=S(T)+\frac{1}{S(T)}
$$

at time of maturity T. Find $\Pi_{Y}(t)$ for all $0 \leq t<T$.

Solution. We have

$$
\Pi_{Y}(t)=\Pi_{S(T)}(t)+\Pi_{\frac{1}{S(T)}}(t)
$$

Here, if $\tau=T-t, s=S(t)$, and $G \in N(0,1)$,

$$
\begin{aligned}
& \Pi_{S(T)}(t)=e^{-r \tau} E\left[s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} G}\right] \\
= & s e^{-\frac{\sigma^{2}}{2} \tau} E\left[e^{\sigma \sqrt{\tau} G}\right]=s e^{-\frac{\sigma^{2}}{2} \tau} e^{\frac{\sigma^{2}}{2} \tau}=s .
\end{aligned}
$$

Moreover,

$$
\begin{gathered}
\Pi_{\frac{1}{S(T)}}(t)=e^{-r \tau} E\left[\frac{1}{s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} G}}\right] \\
\quad=e^{-r \tau} \frac{e^{-\left(r-\frac{\sigma^{2}}{2}\right) \tau}}{s} E\left[e^{-\sigma \sqrt{\tau} G}\right] \\
=\frac{e^{-\left(2 r-\frac{\sigma^{2}}{2}\right) \tau}}{s} e^{\frac{1}{2} \sigma^{2} \tau}=\frac{1}{s} e^{\left(\sigma^{2}-2 r\right) \tau}
\end{gathered}
$$

and it follows that

$$
\Pi_{Y}(t)=S(t)+\frac{1}{S(t)} e^{\left(\sigma^{2}-2 r\right) \tau}
$$

2. (Binomial model) Suppose $d=-u$ and $e^{r}=\frac{1}{2}\left(e^{u}+e^{d}\right)$. A financial derivative of European type has the maturity date $T=4$ and payoff $Y=$ $f\left(X_{1}+X_{2}+X_{3}+X_{4}\right)$, where $f(x)=1$ if $x \in\{4 u, 0,-4 u\}$ and $f(x)=-1$ if $x \in\{2 u,-2 u\}$. Show that $\Pi_{Y}(0)=0$.

Solution. It follows that $d<r<u$ and

$$
q_{u}=\frac{e^{r}-e^{d}}{e^{u}-e^{d}}=\frac{e^{u}-e^{r}}{e^{u}-e^{d}}=q_{d} .
$$

Hence $q_{u}=q_{d}=\frac{1}{2}$. Furthemore,

$$
\begin{aligned}
\Pi_{Y}(0) & =e^{-4 r} \sum_{k=0}^{4}\binom{4}{k} q_{u}^{k} q_{d}^{4-k} f(k u+(4-k) d) \\
& =e^{-4 r} \sum_{k=0}^{4}\binom{4}{k} q_{u}^{k} q_{d}^{4-k} f((2 k-4) u) \\
& =e^{-4 r}\left(\frac{1}{2}\right)^{4}(1-4+6-4+1)=0 .
\end{aligned}
$$

3. (Black-Scholes model) Suppose $T>0, N \in \mathbf{N}_{+}, h=\frac{T}{N}$, and $t_{n}=n h$, $n=0, \ldots, N$, and consider a derivative of European type paying the amount $Y=\sum_{n=0}^{N-1}\left(\ln \frac{S\left(t_{n+1}\right)}{S\left(t_{n}\right)}\right)^{2}$ at time of maturity T. Find $\Pi_{Y}(0)$.

Solution. First consider a derivative paying the amount $Y_{n}=\left(\ln \frac{S\left(t_{n+1}\right)}{S\left(t_{n}\right)}\right)^{2}$ at time T. Since Y_{n} is known at time $t_{n+1}, \Pi_{Y_{n}}\left(t_{n+1}\right)=Y_{n} e^{-r\left(T-t_{n+1}\right)}$. Note that

$$
S\left(t_{n+1}\right)=S\left(t_{n}\right) e^{\left(\mu-\frac{\sigma^{2}}{2}\right) h+\sigma\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right)}
$$

where $W\left(t_{n+1}\right)-W\left(t_{n}\right) \in N(0, h)$. Thus, if $G \in N(0,1)$,

$$
\Pi_{Y_{n}}\left(t_{n}\right)=e^{-r h} E\left[e^{-r\left(T-t_{n+1}\right)}\left\{\left(r-\frac{\sigma^{2}}{2}\right) h+\sigma \sqrt{h} G\right\}^{2}\right]
$$

$$
=e^{-r\left(T-t_{n}\right)}\left\{\left(r-\frac{\sigma^{2}}{2}\right)^{2} h^{2}+\sigma^{2} h\right\}
$$

and since the expression for $\Pi_{Y_{n}}\left(t_{n}\right)$ is known at time 0 ,

$$
\begin{aligned}
\Pi_{Y_{n}}(0) & =e^{-t_{n} h} e^{-r\left(T-t_{n}\right)}\left\{\left(r-\frac{\sigma^{2}}{2}\right)^{2} h^{2}+\sigma^{2} h\right\} \\
& =e^{-r T}\left\{\left(r-\frac{\sigma^{2}}{2}\right)^{2} h^{2}+\sigma^{2} h\right\}
\end{aligned}
$$

Now it follows that

$$
\begin{gathered}
\Pi_{Y}(0)=\sum_{n=0}^{N-1} \Pi_{Y_{n}}(0)=N e^{-r T}\left\{\left(r-\frac{\sigma^{2}}{2}\right)^{2} h^{2}+\sigma^{2} h\right\} \\
=T e^{-r \tau}\left\{\sigma^{2}+h\left(r-\frac{\sigma^{2}}{2}\right)^{2}\right\}
\end{gathered}
$$

4. Derive the delta of a European call in the Black-Scholes model. Recall that the call price equals $s \Phi\left(d_{1}\right)-K e^{-r \tau} \Phi\left(d_{2}\right)$, where $s=S(t), \tau=T-t>0$, and

$$
d_{1}=\frac{\ln \frac{s}{K}+\left(r+\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}=d_{2}+\sigma \sqrt{\tau} .
$$

5. Consider the binomial model in one period and assume $d<r<u$. A derivative pays the amount $Y=f(X)$ at time 1. Find a portfolio which replicates the derivative at time 0 .
