OPTIONS AND MATHEMATICS
(CTH[mwve095], GU[man690))

May 26, 2007, morning (4 hours), v

No aids.

Examiner: Christer Borell, telephone number 0704 063 461
Each problem is worth 3 points.

Solutions

1. (The binomial model with u > 0, d = —u, r = %u, and T' = 2). Suppose
glx) = 1if x = 0 and g(z) = 0 if = # 0. A derivative of European type
has the payoff ¢(S(T') — S(0)) at time of maturity 7. (a) Find the price of
the derivative at time 0. (b) Suppose the strategy h replicates the derivative.
Find hg(0). The answers in Parts (a) and (b) may contain the martingale
probabilities ¢, and qq.

Solution. (a) We have
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Thus if v(t) denotes the price of the derivative at time ¢,
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Now
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(b) Recall that h(0) = h(1) and

hs(1)S(1) + h(1)B(1) = v(1)

or
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2. Suppose Z = (Z1(t), Zs(t))i>o is a standard Brownian motion in the plane.
Find
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Solution. The process X (t) = —=Z(t) + \%Zg(t), t > 0, is a standard
Brownian motion since (\%)2 + (%@)2 = 1. Hence X(t) € N(0,t) and it
follows that
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where G € N(0,1). Thus
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3. (Black-Scholes model) Suppose 0 < Ty < T' and consider a simple deriv-
ative of European type with the payoff Y = min(S(7p), S(7)) at time of
maturity 7. Find Ty (¢) for all ¢ € [0, Tp] .

Solution. If a and b are real numbers min(a,b) + max(a,b) = a + b and,
consequently, min(a,b) = a + b — max(a,b) = b — max(0,b — a). Therefore
Y = S(T) — max(0,S(T") — S(1p)) and it follows that

Hy(Tg) = S(T()) - C(TQ, S(Tg), S(Tg), T)

But (7o, S(Th), S(1y), T) = S(Ty)c(To, 1,1, T), where
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Hence, if we define a = 1 — ¢(Tp, 1,1,T),
Hy(To) == (IS(T())

and it follows that
Iy (t) = aS(t) if 0 <t < Tg.

4. (Dominance Principle) Show that the European call price ¢(t, S(t), K, T)
is a convex function of K.

5. (Black-Scholes model) Assume ¢, 7 €¢ R, 7=T —t >0, and g € P.
(a) Define the price Ily (t) at time ¢ of a European derivative with payoff
g(S(T)) at time of maturity 7.
(b) Let
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and dy = d; — 0+/7. Show that

c(t,s, K,T) = sP(dy) — Ke " ®(dy).



