To Accompany
 ENGINEERING MECHANICS - DYNAMICS

Volume 2
Fifth Edition, 2002
J. L. Meriam and L. G. Kraige

Copyright © 2002 by John Wiley \& Sons, Inc.

USE OF THE INSTRUCTOR'S MANUAL

The problem solution portion of this manual has been prepared for the instructor who wishes to occasionally refer to the authors' method of solution or who wishes to check the answer of his (her) solution with the result obtained by the authors. In the interest of space and the associated cost of educational materials, the solutions are very concise. Because the problem solution material is not intended for posting of solutions or classroom presentation, the authors request that it not be used for these purposes.

In the transparency master section there are approximately 65 solved problems selected to illustrate typical applications. These problems are different from and in addition to those in the textbook. Instructors who have adopted the textbook are granted permission to reproduce these masters for classroom use.

Final positions are different so finite rotations cannot be added as proper vectors
$7 / 2$
$v_{p} \& \underline{\omega}$ are perpendicular so that $\underline{\omega} \cdot \underline{v}=0$
$\underline{\omega}=\frac{600 \times 2 \pi}{60} \frac{\overline{8} \underline{i}+12 \underline{j}+4 \underline{k}}{\sqrt{8^{2}+12^{2}+4^{2}}} \mathrm{rad} / \mathrm{sec}, \underline{v}=12 \underline{i}-6 \underline{j}+v_{z} \underline{k}$
So $(8 \underline{i}+12 \underline{j}+4 \underline{k}) \cdot\left(12 \underline{i}-6 \underline{j}+v_{z} k\right)=0$
$96-72+4 v_{z}=0, \quad v_{z}=-6 \mathrm{ft} / \mathrm{sec}$
$v=\sqrt{12^{2}+(-6)^{2}+(-6)^{2}}=14.70 \mathrm{ft} / \mathrm{sec}$
$R=v / \omega=14.70 /(20 \pi)=0.234 \mathrm{ft}$ or $R=2.81 \mathrm{in}$.

$$
\begin{aligned}
a_{p}=a_{n}=r \omega^{2}=0.234(20 \pi)^{2} & =923 \mathrm{ft} / \mathrm{sec}^{2} \\
\text { or } a_{p} & =11,080 \mathrm{in} . / \mathrm{sec}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 3 \mid \underline{a}=\underline{\omega} \times r+\underline{\omega} \times(\underline{\omega} \times r), r=\overrightarrow{O C}, \underline{\dot{u}}=\underline{0} \\
& r=10(2 \underline{i}+\underline{j}+8 \underline{k}) \mathrm{mm}, \underline{\omega}=30(3 \underline{i}+2 \underline{j}+6 \underline{k}) \mathrm{rad} / \mathrm{s} \\
& \underline{v}=\underline{\omega} \times \underline{r}=300\left|\begin{array}{ccc}
\underline{i} & \underline{j} & \underline{k} \\
3 & 2 & 6 \\
2 & 0 & 8
\end{array}\right|=300(16 \underline{i}-12 \underline{j}-4 \underline{k}) \frac{\mathrm{mm}}{\mathrm{~s}} \\
& \underline{a}=\underline{\omega} \times \underline{v}=30(300)\left|\begin{array}{ccc}
\underline{i} & \underline{j} & \underline{k} \\
3 & 2 & 6 \\
16 & -12-4
\end{array}\right|=9000\left(64 \underline{i}+\frac{108 j-68 \underline{k}}{\mathrm{~mm} / \mathrm{s}^{2}}\right) \\
& a=9 \sqrt{64^{2}+108^{2}+(-68)^{2}}=9 \sqrt{20384}=1285 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$7 / 4 \tan \gamma=\frac{N}{\omega_{z}}=\frac{10}{15}=0.667, \gamma=33.7^{\circ}$

$$
\begin{aligned}
7 / 5 \quad \underline{v}_{A} & =\underline{\omega} \times \underline{r}=(-4 \underline{j}-3 \underline{k}) \times(0.5 \underline{i}+1.2 \underline{j}+1.1 \underline{k}) \\
& =-0.8 \underline{i}-1.5 \underline{j}+2 \underline{k} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The rim speed of any point B is

$$
v_{B}=\sqrt{0.8^{2}+1.5^{2}+2^{2}}=2.62 \mathrm{~m} / \mathrm{s}
$$

$$
7 / 7 \quad \omega_{1}=\frac{2 \pi N_{1}}{60}=\frac{2 \pi(200)}{60}=20.9 \mathrm{rad} / \mathrm{s}
$$

$$
\begin{aligned}
& \omega=40 \mathrm{rad} / \mathrm{s} \\
& \text { Law of cosines } \omega^{2}=\omega_{1}^{2}+\omega_{2}^{2}-2 \omega_{1} \omega_{2} \cos 60^{\circ} \\
& 40^{2}=20.9^{2}+\omega_{2}^{2}-2(20.9) \omega_{2}(0.5)
\end{aligned}
$$

$$
w_{2}^{2}-20.9 w_{2}-1161=0
$$

$$
\begin{aligned}
\omega_{2} & =\frac{20.9}{2}+\frac{1}{2} \sqrt{20.9^{2}+4(1161)} \\
& =10.47 \pm 35.65, \omega_{2}=46.1 \mathrm{rad} / \mathrm{s} \\
N_{2} & =\frac{46.1}{2 \pi} 60=440 \mathrm{rev} / \mathrm{min}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\omega}=(-\sin \theta \underline{i}+\cos \theta \underline{k}) \omega, \quad \underline{\alpha}=\underline{0} \\
& \underline{r}=d \underline{i}+l \underline{j}-h \underline{k}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{v}=\underline{\omega} \times \underline{r} \quad \text { gives } \\
& \underline{v}=\omega[-l \cos \theta \underline{i}+(d \cos \theta-h \sin \theta) \underline{j}-l \sin \theta \underline{k}] \\
& \underline{a}=\underline{\alpha} \times \underline{r}+\underline{\omega} \times(\underline{\omega} \times \underline{r}) \text { gives } \\
& \underline{a}=\omega^{2}\left[\left(h \sin \theta \cos \theta-d \cos ^{2} \theta\right) \underline{\underline{-}}-l \underline{j}+\left(h \sin ^{2} \theta-d \cos \theta \sin \theta\right) \underline{k}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 9 \underline{\alpha}=\underline{\Omega} \times \underline{\omega}=0.6 \underline{k} \times 2 \underline{j}=-1.2 \underline{i} \mathrm{rad} / \mathrm{sec}^{2} \\
& \underline{a}_{p}=\underline{\omega} \times \underline{\underline{\omega}}+\underline{\omega} \times(\underline{\omega} \times \underline{r}), \quad \underline{\omega}=\underline{\Omega}+\underline{\omega}_{0} \\
& \underline{\dot{\omega}}=\underline{\alpha}=-1.2 \underline{i} \mathrm{rad} / \mathrm{sec}^{2} \\
& \left.\underline{r}=34 \underline{j}+20 \underline{k} \text { in. (for } \beta=90^{\circ}\right)
\end{aligned}
$$

Carry out algebra to obtain

$$
\underline{a}_{p}=35.8 \underline{j}-80 \underline{k} \quad \mathrm{in} . / \mathrm{sec}^{2}
$$

$$
\begin{aligned}
& 7 / 10 \mid \underline{\alpha}=\underline{\omega}_{x} \times \underline{\omega}_{z}=-\dot{\gamma}_{\underline{i}} \times \omega_{0} k=-3 \pi \underline{i} \times 4 \pi \underline{k} \\
& =12 \pi^{2} \underline{j} \mathrm{rad} / \mathrm{sec}^{2} \\
& r=5 \underline{j}+10 \underline{k} \mathrm{in} . \\
& \underline{v}=\underline{\omega} \times r=\left|\begin{array}{ccc}
\underline{i} & \underline{j} & \underline{k} \\
-3 \pi & 0 & 4 \pi \\
0 & 5 & 10
\end{array}\right|=5 \pi(-4 \underline{i}+6 \underline{j}-3 \underline{r}) \quad \mathrm{in} / \mathrm{sec} \\
& \underline{a}=\underline{\dot{\omega}} \times \underline{r}+\underline{\omega} \times(\underline{\omega} \times \underline{r})=\underline{\alpha} \times \underline{r}+\underline{\omega} \times \underline{v} \\
& =12 \pi^{2} \underline{j} \times(5 \underline{j}+10 \underline{k})+\left|\begin{array}{ccc}
\underline{i} & \underline{j} & \underline{k} \\
-3 \pi & 0 & 4 \pi \\
-4 & 6 & -3
\end{array}\right| 5 \pi \\
& =120 \pi^{2} \underline{i}-120 \pi^{2} \underline{i}-125 \pi^{2} \underline{j}-90 \pi^{2} \underline{k} \\
& =-5 \pi^{2}(25 \underline{j}+18 \underline{k}) \text { in. } / \sec ^{2}
\end{aligned}
$$

7/11 pk

$$
\begin{aligned}
\Omega & =30 \times 2 \pi / 60 \\
& =\pi \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Thus for $t=1 / 3 \mathrm{~s}$,

$$
\begin{aligned}
\underline{\alpha} & =50 \pi \underline{k}+50 \pi\left(\frac{1}{3}\right)(\sqrt{3} / 2) \pi \underline{i} \\
& =50 \pi\left(\frac{\pi}{2 \sqrt{3}} i+k\right) \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

(Note: Total angular velocity is $\underline{\omega}=\underline{\Omega}+\underline{\omega}_{0}$

$$
\left.\underline{\alpha}=\underline{\dot{u}}=\underline{\Omega}+\underline{\dot{\omega}}_{0}=\underline{o}+\dot{\underline{\omega}}_{0}\right)
$$

$\omega=26.5 \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& 7 / 1.4 \text { From Prob. } 7 / 13 \quad \omega=69.1 \mathrm{rad} / \mathrm{s} \\
& \underline{\omega}=69.1\left(\underline{i} \sin 30^{\circ}+\underline{k} \cos 30^{\circ}\right) \mathrm{rad} / \mathrm{s} \\
& \underline{\Omega}=8 \pi \underline{\mathrm{rad} / \mathrm{s}} \\
& \underline{\alpha}=\underline{\Omega} \times \underline{\omega}=8 \pi \underline{k} \times 69.1\left(\underline{i} \sin 30^{\circ}+k \cos 30^{\circ}\right) \\
& =1737(0.5 \underline{i}+\underline{0}) \\
& \underline{\alpha}=869 \underline{\mathrm{rad} / \mathrm{s}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{7 / 15}{\omega} \quad \underline{\omega}=\underline{\omega}_{p}+\underline{\Omega} \\
& =2 \underline{k}+0.8 \cos 30^{\circ} \underline{k}-0.8 \sin 30^{\circ} \underline{i} \\
& =-0.4 \underline{i}+2.69 \mathrm{krad} / \mathrm{s} \\
& 2 \mathrm{rad} / \mathrm{s} \sqrt{\underline{\Omega}=0.8} \begin{array}{l}
\mathrm{rad} / \mathrm{s}
\end{array} \quad \underline{\alpha}=\underline{\Omega} \times \omega_{p} \\
& =0.8(-0.5 i+0.866 \underline{K}) \times 2 \underline{K} \\
& =1.6(0.5 \underline{j}+0) \\
& \underline{\alpha}=0.8 \underline{\mathrm{rad}} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 16 \dot{\omega}=\underline{\omega}_{1}+\underline{\omega}_{2}=2 \underline{k}+1.5 \underline{i} \\
& \omega=\sqrt{2^{2}+1.5^{2}}=2.5 \mathrm{rad} / \mathrm{s} \\
& \alpha=\underline{\omega}_{1} \times \underline{\omega}_{2}=2 \mathrm{~K} \times 1.5 \underline{i}=3 \mathrm{j} \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
7 / 17 \quad \underline{\omega} & =\underline{\omega}_{1}+\underline{\omega}_{5} \\
& =2 \underline{k}+0.8\left(\underline{j} \cos 30^{\circ}+\underline{k} \sin 30^{\circ}\right) \\
\underline{\omega} & =0.693 \underline{j}+2.40 \underline{k} \mathrm{rad} / \mathrm{s} \\
\underline{\alpha} & =\underline{\omega}, \times \underline{\omega_{5}}=2 \underline{k} \times 0.8\left(\underline{j} \cos 30^{\circ}+\underline{k} \sin 30^{\circ}\right) \\
\underline{\alpha} & =-1.386 \underline{i} \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{7 / 18} v_{A}=b \omega_{0} \\
& \underline{\omega}=\left(-v_{A} / r\right) \underline{\underline{\omega}}+\omega_{0} \underline{k} \\
& \underline{\omega}=\omega_{0}\left(-\frac{b}{r} \underline{i}+\underline{k}\right) \\
& \underline{\alpha}=\underline{\dot{\omega}}=\omega_{0}\left(-\frac{b}{r} \underline{i}\right)+\underline{0} \text { where } \underline{i}=\underline{\omega}_{z} \times \underline{i}=\omega_{0} \underline{j} \\
& \text { so } \\
& \underline{\alpha}=\omega_{0}\left(-\frac{b}{r} \omega_{0} \underline{j}\right), \underline{\alpha}=-\frac{b}{r} \omega_{0}^{2} \underline{j}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{7 / 19} \underline{\omega}_{x}=\frac{-\left(b \omega_{0}+b \Omega\right) \underline{i}}{r} \\
& \underline{\omega}=\underline{\omega}_{x}+\underline{\omega}_{z}=\frac{-\frac{b}{r}\left(\omega_{0}+\Omega\right) \underline{i}+\omega_{0} \underline{k}}{\underline{\alpha}=\underline{\omega}}=\begin{aligned}
& \dot{\omega} \\
&=-\frac{b}{r}\left(\omega_{0}+\Omega\right) \omega_{0} \underline{j}+\underline{0}\left(\omega_{0}+\Omega\right) \underline{j}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 20 \quad r=\overrightarrow{O B}=-120 \sin 30^{\circ} \underline{i}+120 \cos 30^{\circ} \underline{j}+200 \underline{k} \mathrm{~mm} \\
& =-60 \underline{i}+103.9 \underline{j}+200 \underline{k} \mathrm{~mm} \\
& \underline{\omega}=\underline{\omega}_{x}+\underline{\omega}_{z}=10 \underline{i}+20 \underline{k} \mathrm{rad} / \mathrm{s} \\
& \underline{v}=\underline{\omega} \times r=10(\underline{i}+2 \underline{k}) \times(-60 \underline{i}+103.9 \underline{j}+200 \underline{k}) \\
& =10(-208 \underline{i}-320 j+103.9 \underline{k}) \\
& V=10 \sqrt{208^{2}+320^{2}+103.9^{2}}=3950 \mathrm{~mm} / \mathrm{s} \\
& \text { or } \quad v=3.95 \mathrm{~m} / \mathrm{s} \\
& a=\underline{\dot{\omega}} \times \underline{r}+\underline{\omega} \times(\underline{\omega} \times r) \\
& \text { where } \underline{\dot{\omega}}=\underline{\alpha}=\underline{\omega}_{x} \times \underline{\omega}=\underline{\omega}_{x} \times \underline{\omega}_{2}=10 \underline{i} \times 20 \underline{k}=-200 \underline{j} \frac{\mathrm{rad}}{\mathrm{~s}^{2}} \\
& \underline{\dot{\omega}} \times \underline{I}=-200 j \times(-60 \underline{i}+103.9 \underline{j}+200 k) \\
& =-4000(10 \underline{i}+3 \underline{k}) \mathrm{mm} / \mathrm{s}^{2} \\
& \underline{\omega} \times(\underline{\omega} \times \underline{r})=\underline{\omega} \times \underline{v}=10(\underline{i}+2 \underline{k}) \times 10(-208 \underline{i}-320 \underline{j}+103.9 \mathrm{t}) \\
& =100(640 \underline{i}-520 \underline{j}-320 \underline{k}) \\
& \underline{a}=24.0 \underline{i}-52.0 \underline{j}-44.0 \underline{k} \mathrm{~m} / \mathrm{s}^{2} \\
& a=\sqrt{24.0^{2}+52.0^{2}+44.0^{2}}=72.2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 21 \quad \theta=\frac{\pi}{6} \sin 4 \pi t \text { where } \theta_{0}=\frac{\pi}{6} \mathrm{rad}, \Omega=\pi \mathrm{rad} / \mathrm{s}, \dot{\beta}=\Omega=\pi \mathrm{rad} / \mathrm{s} \\
& \underline{\omega}=\underline{\omega}_{O A}=-\dot{\theta} \underline{j}+\dot{\beta} \underline{k}, \underline{\alpha}_{O A}=\dot{\omega}_{O A}=-\ddot{\theta} \underline{j}-\dot{\theta} \dot{j}+\ddot{\beta} \underline{k}+\dot{\beta} \underline{k}, \ddot{\beta}=0, \underline{k}=\underline{0} \\
& \dot{j}=-\Omega \underline{i}=-\pi \underline{i}, \dot{\theta}=\frac{2 \pi^{2}}{3} \cos 4 \pi t, \ddot{\theta}=-\frac{8 \pi^{3}}{3} \sin 4 \pi t \\
& \underline{\omega}=\underline{\omega}_{O A}=-\frac{2 \pi^{2}}{3} \cos 4 \pi t(\underline{j})+\pi \underline{k} \\
& \left.\underline{\alpha}=\underline{\alpha}_{O A}=\frac{8 \pi^{3}}{3} \sin 4 \pi t \underline{(j}\right)+\frac{2 \pi^{3}}{3} \cos 4 \pi t(\underline{i}) \\
& \text { (a) } t=\frac{1}{2} s, \underline{\omega}=-\frac{2 \pi^{2}}{3} \cos 2 \pi(j)+\pi \underline{k}, \underline{\omega}=\pi\left(-\frac{2 \pi}{3} \underline{j}+\underline{k}\right) \\
& \underline{\alpha}=\frac{8 \pi^{3}}{3} \sin 2 \pi(\underline{j})+\frac{2 \pi^{3}}{3} \cos 2 \pi(\underline{i}), \underline{\alpha}=\frac{2 \pi^{3}}{3} \underline{i} \\
& \text { (b) } t=\frac{1}{8} s, \underline{\omega}=-\frac{2 \pi^{2}}{3} \cos \frac{\pi}{2}(\underline{j})+\pi \underline{k}, \quad \underline{\omega}=\pi \underline{k} \\
& \alpha=\frac{8 \pi^{3}}{3} \sin \frac{\pi}{2}(\underline{j})+\frac{2 \pi^{3}}{3} \cos \frac{\pi}{2}(\underline{i}), \quad \alpha=\frac{8 \pi^{3}}{3} j
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 22 \quad \underline{r}_{A}=\underline{r}=0.220(\underline{i} \cos \theta+\underline{k} \sin \theta) \mathrm{m}, \Omega=\pi \mathrm{rad} / \mathrm{s} \\
& \text { (a) } t=\frac{1}{2} s, \sin 4 \pi t=0, \cos \theta=\cos \left(\theta_{0} \sin 4 \pi \frac{1}{2}\right)=\cos \theta=1 \\
& \sin \theta=\sin \left(\theta_{0} \sin 4 \pi \frac{1}{2}\right)=\sin \theta=0 \\
& r=0.220(\underline{i}+0 \underline{k})=0.220 \underline{i} \\
& \underline{v}=\underline{\omega} \times \underline{r}=\pi\left(-\frac{2 \pi}{3} \underline{j}+\underline{k}\right) \times 0.220 \underline{i}, \underline{v}=0.220 \pi\left(\underline{j}+\frac{2 \pi}{3} \underline{k}\right) \mathrm{m} / \mathrm{s} \\
& \text { or } \underline{v}=0.691 \underline{j}+1.448 \underline{k} \mathrm{~m} / \mathrm{s} \\
& \underline{a}=\underline{\alpha} \times \underline{r}+\underline{\omega} \times \underline{v} \\
& =\frac{2 \pi^{3}}{3} \underline{i} \times 0.220 \underline{i}+\pi\left(-\frac{2 \pi}{3} \underline{j}+\underline{k}\right) \times 0.220 \pi\left(\underline{j}+\frac{2 \pi}{3} k\right) \\
& =\underline{0}+0.220 \pi^{2}\left(-\left[\frac{2 \pi}{3}\right]^{2} \underline{i}-\underline{i}\right)=-0.220 \pi^{2}\left(1+\left[\frac{2 \pi}{3}\right]^{2}\right) \underline{i} \\
& \text { or } \underline{a}=-11.70 \underline{i} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$7 / 23$ 信 $=24 \mathrm{~m}, \dot{\beta}=0.10 \mathrm{rad} / \mathrm{s}$ const., $\beta=30^{\circ}$

$$
\underline{a}=\underline{\dot{u}} \times \underline{r}+\underline{\omega} \times(\underline{\omega} \times \underline{r})=\underline{\alpha} \times \underline{r}+\underline{\omega} \times \underline{v}
$$

$$
\underline{\alpha}=\underline{\dot{u}}=\underline{\omega}_{z} \times \underline{\omega}_{y}=0.209 \underline{k} \times 0.10 \underline{j}=-0.0209 \underline{i} \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\underline{\dot{\omega}} \times \underline{r}=\underline{\alpha} \times \underline{r}=-0.0209 \underline{i} \times(12 \underline{i}+20.78 \underline{k})=0.435 \underline{j} \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\underline{w} \times \underline{v}=(0.209 \underline{k} \times 0.10 \underline{j}) \times(2.078 \underline{i}+2.513 \underline{j}-1.2 \underline{k})
$$

$$
=-0.646 \underline{i}+0.435 \underline{j}-0.208 \underline{k} \mathrm{~m} / \mathrm{s}^{2}
$$

$\underline{a}=-0.646 \underline{i}+0.870 \underline{j}-0.208 k \mathrm{~m} / \mathrm{s}^{2}$

$$
a=|\underline{a}|=\sqrt{(-0.646)^{2}+(0.870)^{2}+(-0.208)^{2}}=1.104 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& r=\overrightarrow{O P}=\left(24 \sin 30^{\circ}\right) \underline{i}+\left(24 \cos 30^{\circ}\right) \underline{k} \\
& =12 \vdots+20.78 \mathrm{k} \mathrm{~m} \\
& \underline{\omega}=\frac{2(2 \pi)}{60} \underline{k}+0.10 \underline{j}=0.209 \underline{k}+0.10 j \frac{\mathrm{rad}}{\mathrm{~s}} \\
& \underline{v}=\underline{\omega} \times \underline{r}=(0.209 \underline{k}+0.10 \underline{j}) \times(12 \underline{i}+20.78 \underline{k}) \\
& =2.078 \underline{i}+2.513 j-1.2 \underline{k} \mathrm{~m} / \mathrm{s} \\
& \text { where } v=|\underline{v}|=\sqrt{(2.078)^{2}+(2.513)^{2}+(-1.2)^{2}}=3.48 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

7/24 (a)

$$
\begin{aligned}
& 7 / 24(a) \underline{\alpha}=\dot{\theta} \underline{i} \times \underline{\omega}_{0}=2 \underline{i} \times(-4 \underline{j}-3 \underline{k}) \\
&=\frac{6 \underline{j}-8 \underline{k} \mathrm{rad} / \mathrm{s}^{2}}{} \\
& \underline{a}_{A}=\underline{\omega} \times \underline{r}+\underline{\omega} \times(\underline{\omega} \times \underline{r}) \\
& \text { With } \underline{\alpha}=6 \underline{j}-8 \underline{k} \mathrm{rad} / \mathrm{s}^{2}, \underline{r}=0.5 \underline{i}+1.2 \underline{j}+1.1 \underline{k} m
\end{aligned}
$$

$$
\text { and } \bar{\omega}=\dot{\theta} \underline{i}+\underline{w}_{0}=2 \underline{i}-4 \underline{j}-3 \underline{k} \operatorname{rod} / \mathrm{s} \text {, we }
$$

obtain $\quad \underline{a}_{A}=-12.5 \underline{i}-10.4 \underline{j}-13.6 \underline{k} \mathrm{~m} / \mathrm{s}^{2}$

$$
a_{A}=\sqrt{12.5^{2}+10.4^{2}+13.6^{2}}=21.2 \mathrm{~m} / \mathrm{s}^{2}
$$

(b)

$$
\begin{aligned}
\underline{\alpha} & =\underline{\Omega} \times \underline{\omega_{0}}=2 \underline{k} \times(-4 \underline{j}-3 \underline{k}) \\
& =\underline{8} \underline{\mathrm{rad}} / \mathrm{s}^{2} \\
\underline{a}_{A} & =\underline{\alpha} \times \underline{r}+\underline{\omega} \times(\underline{\omega} \times \underline{r})
\end{aligned}
$$

With $\underline{\alpha}=8 \underline{i} \mathrm{rad} / \mathrm{s}^{2}, \quad r=0.5 \underline{i}+1.2 \underline{j}+1.1 \underline{k} \mathrm{~m}$, and $\underline{\omega}=\underline{\Omega}+\underline{\omega}_{0}=2 \underline{k}+(-4 \underline{j}-3 \underline{k})=-4 \underline{j}-\underline{k} \mathrm{rad} / \mathrm{s}$, we obtain $\quad a_{A}=-8.5 \underline{i}-5.6 \underline{j}-3.2 \underline{k} \mathrm{k} / \mathrm{s}^{2}$

$$
a_{A}=\sqrt{8.5^{2}+5.6^{2}+3.2^{2}}=10.67 \mathrm{~m} / \mathrm{s}^{2}
$$

$7 / 25 \quad \underline{\omega}=\Omega \underline{k}+\dot{\gamma} \underline{i}-\omega_{0} \cos \gamma \underline{j}-\omega_{0} \sin \gamma \underline{k}$

$$
\begin{aligned}
\underline{\alpha}=\dot{\omega}= & \Omega \dot{k}+\dot{\gamma} \underline{i}+\omega_{0} \dot{\gamma} \sin \gamma \underline{j}-\omega_{0} \cos \gamma \dot{j} \\
& -\omega_{0} \dot{\gamma} \cos \gamma \underline{k}-\omega_{0} \sin \gamma \dot{k}
\end{aligned}
$$

where $\Omega=4 \mathrm{rad} / \mathrm{s}$ const.

$$
\omega_{0}=3 \mathrm{rad} / \mathrm{s} \quad \text { " } \quad \gamma=30^{\circ}
$$

$$
\dot{\gamma}=-\pi / 4 \mathrm{rad} / \mathrm{s} \quad \because
$$

$$
4 \underline{i}=\underline{\Omega} \times \underline{i}=\Omega \underline{k} \times \underline{i}=\Omega \underline{j} ; \underline{j}=\underline{\Omega} \times \underline{j}=\Omega \underline{k} \times \underline{j}=-\Omega \underline{i} ; \underline{k}=\Omega \underline{k} \times \underline{k}=\underline{0}
$$

so $\underline{\alpha}=\underline{0}+\dot{\gamma} \Omega \underline{j}+\omega_{0} \dot{\gamma} \sin \gamma \underline{j}+\omega_{0} \Omega \cos \gamma \underline{i}-\omega_{0} \dot{j} \cos \gamma \underline{k}+0$

$$
=10.392 \underline{i}-4.320 \underline{j}+2.040 \underline{\mathrm{~K}} \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
\alpha=|\underline{\alpha}| & =\sqrt{(10.392)^{2}+(4.320)^{2}+(2.040)^{2}}=11.44 \mathrm{rad} / \mathrm{s}^{2} \\
\underline{\omega} & =-\frac{\pi}{4} \underline{i}-3(0.866) \underline{j}+(4-3 \times 0.5) \mathrm{k} \\
& =-0.785 \underline{i}-2.60 \underline{j}+2.5 \mathrm{krad} / \mathrm{s}
\end{aligned}
$$

$$
\underline{\omega}=\frac{v}{r \cos \gamma} \underline{i}
$$

But $\cos \gamma=\frac{h}{\sqrt{r^{2}+h^{2}}}$

$$
\begin{aligned}
\underline{\omega} & =\frac{v \sqrt{r^{2}+h^{2}}}{r h} \underline{i} \\
& =v \sqrt{\frac{1}{h^{2}}+\frac{1}{r^{2}}} \underline{i}
\end{aligned}
$$

$$
\begin{aligned}
\omega & =\text { const so } \underline{\alpha}=\underline{\Omega} \times \underline{\omega} \\
\underline{\Omega} & =-\frac{v}{h \cos \gamma} \underline{k} \\
\text { so } \underline{\alpha} & =-\frac{v}{h \cos \gamma} k \times \frac{v}{r \cos \gamma} \underline{i}=-\frac{v^{2}}{h r \cos ^{2} \gamma} \underline{j} \\
\underline{\alpha} & =-\frac{v^{2}}{h^{2}}\left(\frac{r}{h}+\frac{h}{r}\right) \underline{j}
\end{aligned}
$$

7/28 For $t=0 \theta=0$ and position vector of B is $r=4 i-8 k$ in.

$$
\omega_{x}=-\dot{\theta}=-\frac{\pi}{6} 3 \pi \cos 3 \pi t=-\frac{\pi}{2}^{2} \mathrm{rad} / \mathrm{sec} \text { for } t=0
$$

$\omega_{z}=2 \pi \mathrm{rad} / \mathrm{sec}$
$\omega=\omega_{x} i+\omega_{z} \underline{k}=-\frac{\pi^{2}}{2} i+2 \pi \underline{k} \mathrm{rad} / \mathrm{sec}$ for $t=0$
$\underline{v}=\boldsymbol{\omega} \times \underline{r}=\left(-\frac{\pi^{2}}{2} \underline{i}+2 \pi \underline{k}\right) \times(4 \underline{i}-8 \underline{k})=-4 \pi^{2} \underline{j}+8 \pi \underline{j}=4 \pi(2-\pi) j$ in. $/ \mathrm{sec}$
or $\underline{v}=-14.35 j$ in. sec
$\underline{a}=\underline{\omega} \times r+\underline{\omega} \times(\underline{\omega} \times r)$
$\underline{\dot{\omega}}=\dot{\omega}_{x} \underline{i}+\omega_{x} \underline{i}+\dot{\omega}_{z} \underline{k}+\omega_{z} \underline{k}=+\frac{\pi^{2}}{2}(3 \pi) \sin 3 \pi t \underline{i}-\frac{\pi^{2}}{2} \cos 3 \pi t\left(\omega_{z} \underline{j}\right)$

$$
+\underline{O}+\underline{0}
$$

$\dot{\omega}_{t=0}=\underline{0}-\frac{\pi^{2}}{2} 2 \pi \underline{j}=-\pi^{3} \dot{j}, \underline{\alpha}=\dot{\dot{\omega}}=-\pi^{3} \underline{j}=-31.0 \underline{j} \mathrm{rad} / \mathrm{sec}^{2}$
so $\underline{a}=-\pi^{3} \underline{j} \times(4 \underline{i}-\overline{8} k)+\left(-\frac{\pi^{2}}{2} \underline{i}+2 \pi \underline{k}\right) \times 4 \pi(2-\pi) j$
$=16 \pi^{2}(\pi-1) \underline{i}+2 \pi^{4} \underline{k}$ in. $1 \sec ^{2}$
$\underline{a}=338 \underline{i}+194.8 \underline{k}$ in. $/ \sec ^{2}$

7/29 Angular velocity of rotor is

$$
\underline{\omega}=p \underline{k}-q \underline{i}, \underline{\alpha}=\underline{\omega}=p \dot{\underline{k}}-q \underline{i}=\underline{\Omega} \times(p \underline{k}-g \underline{i})
$$

where $\Omega=$ angular velocity of axes $=-q i$
Thus $\underline{\alpha}=-q \underline{i} \times(p \underline{-}-q \underline{i})=p \underline{j}$
or from $E q .7 / 7, \underline{\alpha}=\left(\frac{d \underline{\omega}}{d t}\right)_{X Y Z}=0+\Omega \times \underline{\omega}$

$$
=-g \underline{i} \times(p \underline{K}-g \underline{i})=p g \underline{j}
$$

$$
\begin{aligned}
& 7 / 30 \underline{\omega}=\underline{\Omega}+\underline{p}=4 \underline{i}+10 \underline{K}, \underline{\omega}=\sqrt{4^{2}+10^{2}}=10.77 \frac{\mathrm{rad}}{\mathrm{~s}} \\
& \underline{\alpha}=\underline{\Omega} \times \underline{p}=4 \underline{i} \times 10 \underline{K}=-40 \underline{j} \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

$7 / 31$ Angular velocity of $x-y-z$ axes is $\Omega=4 i \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
v_{A}= & \underline{v}_{c}+\Omega \times r_{\Delta / C}+v_{r e l} \\
& v_{c}=0.4(4)(-j)=-1.6 \underline{j} \mathrm{~m} / \mathrm{s} \\
& \underline{\Omega} \times r_{A / C}=4 \underline{i} \times 0.3 \underline{j}=1.2 \underline{k} \mathrm{~m} / \mathrm{s} \\
& \underline{v}_{r e l}=0.3(10)(-\underline{i})=-3 \underline{i} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

So

$$
\underline{v}_{A}=-1.6 \underline{j}+1.2 \underline{k}-3 \underline{i}, \quad \underline{v}_{A}=-3 \underline{i}-1.6 \underline{j}+1.2 \underline{k} \mathrm{~m} / \mathrm{s}
$$

$$
\underline{a}_{A}=\underline{a}_{C}+\dot{\Omega} \times \underline{r}_{A / C}+\underline{\Omega} \times\left(\underline{\Omega} \times \underline{r}_{A / C}\right)+2 \underline{\Omega} \times \underline{v}_{r e l}+\underline{a}_{r e l}
$$

$$
\underline{a}_{6}=0.4\left(4^{2}\right)(-k)=-6.4 k \mathrm{~m} / \mathrm{s}^{2}, \dot{\Omega}=0
$$

$$
\Omega \times\left(\Omega \times r_{1 / C}\right)=4 i \times 1.2 K=-4.8 j \mathrm{~m} / \mathrm{s}^{2}
$$

$$
2 \underline{\Omega} \times \underline{v}_{r e t}=2(4 \underline{i}) \times(-3 \underline{i})=0
$$

$$
a_{r e l}=0.3\left(10^{2}\right)(-\underline{j})=-30 j \mathrm{~m} / \mathrm{s}^{2}
$$

so $a_{A}=-6.4 k-4.8 \underline{j}-30 \underline{j}, \underline{a}_{A}=-34.8 j-6.4 k \mathrm{~m} / \mathrm{s}^{2}$

$7 / 33$ The angular velocity $\underline{\omega}$ of the plate is $\underline{\omega}=\dot{\varphi} \underline{k}+\dot{\theta} \underline{i}$.

$$
\begin{aligned}
& \operatorname{In} x-y-z \quad \underline{\alpha}_{x y z}=\left(\frac{d \underline{\omega}}{d t}\right)_{x y z}=\ddot{\varphi} \underline{k}+\underline{0} \quad(\ddot{\theta}=0 \quad \underline{i}=\underline{0}) \\
& \text { So by Eq. } 7 / 7 \underline{\alpha}_{X Y z}=\left(\frac{d \underline{\omega}}{d t}\right)_{x Y z}=\ddot{\varphi}_{\underline{k}}+\dot{\theta} \underline{i} \times(\underline{\varphi} \underline{k}+\dot{\dot{\theta}} \underline{i})=\ddot{\varphi} \underline{k}-\dot{\theta} \dot{\dot{j}}
\end{aligned}
$$

or, by straight differentiation,

$$
\begin{array}{r}
\underline{\alpha}_{X Y Z}=\left(\frac{d \underline{w}}{d t}\right)_{X Y Z}=\ddot{\varphi} \underline{k}+\dot{\varphi} \underline{\underline{k}}+\underline{0} \text { where } \ddot{\theta}=0 \underline{q} \underline{i}=\underline{0} \\
\text { But } \underline{\underline{k}}=\dot{\theta} \underline{i} \times \underline{k}=-\dot{\theta} \underline{j} \text { so } \underline{\alpha}_{X Y Z}=\ddot{\varphi} \underline{k}+\dot{\varphi}(-\dot{\theta} \underline{j})=\ddot{\varphi} \underline{k}-\dot{\theta} \dot{\varphi} \underline{j}
\end{array}
$$

7/34
In Eq. 7/6,

$$
\begin{aligned}
& \underline{v}_{B}=-R \dot{\theta} \underline{j}, \underline{\Omega}=\dot{\theta} \underline{i}, \underline{r}_{A / B}=\frac{b}{\sqrt{2}} \underline{i} \quad(\text { for } \varphi=0), \underline{v}_{r e l}=\frac{b}{\sqrt{2}} \underline{\dot{\varphi}}(\text { for } \varphi=0) \\
& \underline{v}_{A}=\underline{v}_{B}+\Omega \times \underline{r}_{A / B}+\underline{v}_{\text {rel }}, \underline{v}_{A}=-R \dot{\theta} \underline{j}+\dot{\theta} \underline{i} \times \frac{b}{\sqrt{2}} \underline{i}+\frac{b}{\sqrt{2}} \dot{\varphi} \underline{j}, \\
& \underline{-}_{A}=\left(\frac{b}{\sqrt{2}} \dot{\varphi}-R \dot{\theta}\right) \underline{j} \\
& \underline{a}_{r e l}=-\frac{b}{\sqrt{2}} \dot{\varphi}^{2} \underline{i}, \underline{a}_{B}=-R \dot{\theta}^{2} \underline{k}, \underline{\underline{\Omega}}=\ddot{\theta} \underline{i}=\underline{0} \\
& \underline{a}_{A}=\underline{a}_{B}+\underline{\Omega} \times \underline{r}_{A / B}+\underline{\Omega} \times\left(\underline{\Omega} \times \underline{r}_{A / B}\right)+2 \underline{\Omega} \times \underline{\underline{q}}_{r e l}+\underline{a}_{r e l} \\
& \underline{a}_{A}=-R \dot{\theta}^{2} \underline{\underline{k}}+\underline{Q}+\dot{\theta} \underline{\underline{i}} \times\left(\dot{\theta} \underline{\underline{i}} \times \frac{b}{\sqrt{2}} \underline{i}\right)+2 \dot{\theta} \underline{i} \times \frac{b}{\sqrt{2}} \underline{\varphi} \underline{j}-\frac{b}{\sqrt{2}} \dot{\varphi}^{2} \underline{i} \\
& =-R^{2} \dot{\theta}^{2} \underline{k}+b \sqrt{2} \dot{\theta} \dot{\varphi} \underline{k}-\frac{b}{\sqrt{2}} \dot{\varphi}_{\underline{2}}^{\underline{\underline{a}}} \underline{\underline{a}_{A}}=(-R \dot{\theta}+b \sqrt{2} \dot{\varphi}) \dot{\theta} \underline{k}-\frac{b}{\sqrt{2}} \dot{\varphi}^{2} \underline{i} \\
& \text { or } \underline{a}_{A}=-\frac{b}{\sqrt{2}} \dot{\varphi}^{2} \underline{i}-(R \dot{\theta}-b \sqrt{2} \dot{\varphi}) \dot{\theta} \underline{k}
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 35 \text { Angular velocity of OA is } \underline{\omega}=-\dot{\beta} \underline{i}+p \sin \beta \underline{j}+(p \cos \beta+\Omega) \underline{k} \\
& E_{q \cdot} 7 / 7 a,[]=\underline{\omega},\left(\frac{d[\underline{a}}{d t}\right)_{x Y z}=\left(\frac{d[\underline{]}}{d t}\right)_{x y z}+\underline{\Omega} \times[\underline{]} \\
& \begin{array}{l}
\left(\frac{d \underline{\omega}}{d t}\right)_{x y z}=\underline{O}+p \dot{\beta} \cos \beta \underline{j}+(-p \dot{\beta} \sin \beta+0) \underline{k} \\
\Omega \times \underline{\omega}=\Omega \underline{k} \times(-\dot{\beta} \underline{i}+p \sin \beta \underline{j}+[p \cos \beta+\Omega] \underline{k}) \\
=-\Omega \dot{\beta} \underline{j}-\Omega p \sin \beta \underline{i} \\
\text { so } \underline{\alpha}=(p \dot{\beta} \cos \beta-\Omega \dot{\beta}) \dot{j}-\Omega p \sin \beta \underline{i}-p \dot{\beta} \sin \beta \underline{k} \\
\underline{\alpha}=-\Omega p \sin \beta \underline{i}+\dot{\beta}(p \cos \beta-\Omega) \underline{j}-p \dot{\beta} \sin \beta \underline{k}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 36 \underline{v}_{A}=\underline{v}_{B}+\underline{w} \times \underline{r}_{A / B} \\
& \underline{a}_{A}=\underline{a}_{B}+\underline{\dot{w}} \times \underline{r}_{A / B}+\underline{\omega} \times\left(\underline{w} \times \underline{r}_{A / B}\right) \\
& \underline{\omega}=1.4 \underline{i}+1.2 \underline{\mathrm{rad} / \mathrm{sec} ; \dot{\omega}=2 \underline{i}+3 \underline{j} \mathrm{rad} / \mathrm{sec}^{2}} \\
& \underline{r}_{A / B}=5 \underline{i} \mathrm{ft}, \underline{v}_{B}=3.2 \underline{j} \mathrm{ft} / \mathrm{sec}, \underline{a}_{B}=4 \mathrm{jt} / \mathrm{sec}^{2}
\end{aligned}
$$

Substitution and simplification yield

$$
\underline{v}_{A}=3.2 \underline{j}-6 \underline{k} \mathrm{ft} / \mathrm{sec} \Rightarrow \quad \underline{v}_{A}=6.8 \mathrm{ft} / \mathrm{sec}
$$

$\underline{a}_{A}=-7.2 \underline{i}+12.4 \underline{j}-15 \underline{\mathrm{k}} \mathrm{ft} / \mathrm{sec}^{2} \Rightarrow \underline{a}_{A}=20.8 \mathrm{ft} / \mathrm{sec}^{2}$
$7 / 37$ Sol. I $x^{2}+y^{2}+Z^{2}=L^{2}$

$$
x \dot{x}+\dot{y} \dot{Y}+0=0, \quad Z=\text { const. }, L=\text { const. }
$$

$$
\dot{Y}=v_{A}=-\frac{x}{Y} \dot{x}=-\frac{0.3}{0.2} 4=-6 \mathrm{~m} / \mathrm{s} \quad\left(-y-d i r_{1}\right)
$$

Sol. II $v_{A}=v_{B}+\omega \times r_{A / B}, \omega \cdot \underline{r}_{A / B}=0$ taking $\omega \perp A B$

$$
\begin{aligned}
& v_{A} \underline{j}=4 \underline{i}+\left|\begin{array}{ccc}
\frac{i}{\omega_{x}} & \underline{\omega}_{y} & \underline{\omega}_{z} \\
-0.3 & 0.2 & 0.6
\end{array}\right| \\
& \left(\underline{i} \omega_{x}+\underline{j} \omega_{y}+\underline{k} c \omega_{z}\right) \cdot(-0.3 \underline{i}+0.2 \underline{j}+0.6 \underline{k})=0
\end{aligned}
$$

Expand, equate coefficients \& get

$$
\begin{align*}
0.6 \omega_{y}-0.2 \omega_{z} & =-4 \tag{1}\\
-0.6 \omega_{x}-0.3 \omega_{z} & =v_{4} \tag{2}\\
0.2 \omega_{x}+0.3 \omega_{y} & =0 \tag{3}\\
-0.3 \omega_{x}+0.2 \omega_{y}+0.6 \omega_{z} & =0 \tag{4}
\end{align*}
$$

Solve simultaneously \& get

$$
\begin{aligned}
& \omega_{x}=7.35 \mathrm{rad} / \mathrm{s}, \omega_{y}=-4.90 \mathrm{rad} / \mathrm{s}, \omega_{z}=5.31 \mathrm{rad} / \mathrm{s} \\
& \underline{v}_{4}=-6 \underline{j \mathrm{~m}} / \mathrm{s}
\end{aligned}
$$

7/38 Angular velocity of axes is $\Omega=p k$

$$
\begin{aligned}
\underline{\alpha}=\dot{\underline{\omega}}=\dot{\underline{\Omega}}-\ddot{\beta} \underline{i}-\dot{\rho} \dot{i} & =\ddot{\dot{\dot{ }}-\ddot{\beta} \dot{i}-\dot{\beta} \Omega \times \underline{i}} \\
& =0-\ddot{\beta} \underline{\underline{i}}-\dot{\beta} p \underline{\Omega} .
\end{aligned}
$$

(a) before; $\dot{\beta} \alpha \dot{\beta}=\ddot{\beta} \alpha \beta, \ddot{\beta}=\dot{\beta} \frac{\alpha \dot{\beta}}{d \beta}=\left(2 \frac{2 \pi}{360}\right) \frac{2}{18}$

$$
\begin{aligned}
&=0.00388 \mathrm{rad} / \mathrm{s}^{2} \\
& \underline{\alpha}=-0.00388 \underline{i}-\frac{2 \pi}{180} \frac{1}{10} \underline{j}=-(3.88 \underline{i}+3.49 \underline{j}) 10^{-3} \frac{\mathrm{rad}}{\mathrm{~s}^{2}}
\end{aligned}
$$

(b) after; $\ddot{\beta}=0, \quad \underline{\alpha}=-3.49\left(10^{-3}\right) \underline{\mathrm{rad}} / \mathrm{s}^{2}$

$7 / 40$ Let $\gamma=$ angle between $A B \notin y$-axis Angular velocity of: $A B$ is $\underline{\omega}=-\dot{\gamma} i \underline{i}+\Omega$ So $\underline{\alpha}=\underline{\dot{u}}=-\ddot{\gamma} \underline{i}-\dot{\partial} \underline{i}+\underline{0}$.
But $z=\ell \sin \gamma, v_{A}=\dot{z}=\ell \dot{\gamma} \cos \gamma$
$\& \dot{v}_{A}=0=-l \dot{\gamma}^{2} \sin \gamma+\ell \dot{\gamma} \cos \gamma$
so $\gamma^{\circ}=\frac{v_{A}}{\ell \cos \gamma}=\frac{8}{5(4 / 5)}=2 \mathrm{rad} / \mathrm{sec}$

$$
\ddot{\gamma}=\dot{\gamma}^{2} \tan \gamma=2^{2}(3 / 4)=3 \mathrm{rad} / \mathrm{sec}^{2}
$$

Also $\underline{i}=\Omega \underline{k} \times \underline{i}=\Omega \underline{j}=2 \underline{j} \mathrm{rad} / \mathrm{sec}$
Thus $\underline{\alpha}=-3 \underline{i}-2(2 j)=-3 \underline{i}-4 j \mathrm{rad} / \mathrm{sec}^{2}$

7/41 Precession is steady so $\alpha=\underline{\Omega} \times \underline{\rho}$

$$
\begin{aligned}
& \underline{\alpha}=4 \pi \underline{k} \times 10 \pi \underline{\underline{j}}=-40 \pi^{2} \underline{i} \mathrm{rad} / \mathrm{s}^{2} \\
& \underline{a}_{A}=\underline{a}_{0}+\underline{\Omega} \times r_{A / 0}+\underline{\Omega} \times\left(\underline{\Omega} \times r_{A / 0}\right)+2 \underline{\Omega} \times \underline{v}_{r e l}+\underline{a}_{r e l} \\
& \underline{a}_{0}=\Omega \times\left(\underline{\Omega} \times r_{0}\right)=-r_{0} \Omega^{2} \underline{i}=-0.3(4 \pi)^{2} \underline{i}=-4.8 \pi^{2} \underline{i} \mathrm{~m} / \mathrm{s}^{2} \\
& \underline{\Omega}=0 ; \underline{\Omega} \times r_{A / 0}=4 \pi \underline{k} \times 0.1 \underline{k}=\underline{0} \\
& \underline{v}_{r e l}=\underline{p} \times r_{A / 0}=10 \pi \underline{\underline{j}} \times 0.1 \underline{k}=\pi \underline{i} \mathrm{~m} / \mathrm{s} \\
& 2 \underline{\Omega} \times \underline{v}_{r e l}=2(4 \pi \underline{k}) \times \pi \underline{i}=8 \pi^{2} \underline{j} \mathrm{~m} / \mathrm{s}^{2} \\
& \underline{a}_{r e l}=\underline{p} \times(\underline{p} \times \underline{r} / 0)=-0.1(10 \pi)^{2} \underline{k}=-10 \pi^{2} \underline{k} \mathrm{~m} / \mathrm{s}^{2} \\
& \underline{a}_{A}=-4.8 \pi^{2} \underline{i}+8 \pi^{2} \underline{j}-10 \pi^{2} \underline{k} \\
& =2 \pi^{2}(-2.4 \underline{i}+4 \underline{j}-5 \underline{k}) \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{-}_{A}=\underline{v}_{0}+\Omega \times \underline{r}_{A / 0}+\underline{v}_{r e l} \\
& \underline{v}_{0}=-R \Omega \underline{i}, \underline{\Omega}=\Omega \underline{\underline{k}}, \underline{r}_{A 10}=b \sin \beta \underline{j}+b \cos \beta \underline{\underline{k}}, \underline{\underline{v}_{r e l}}=b \dot{\beta}(\cos \beta \underline{j}-\sin \beta \underline{\underline{k}}) \\
& \underline{v}_{A}=-R \Omega \underline{i}+\Omega \underline{k} \times b(\sin \beta \underline{j}+\cos \beta \underline{\underline{k}})+b \dot{\beta}(\cos \beta \underline{j}-\sin \beta \underline{\underline{k}}) \\
& \underline{v}_{A}=-\Omega(R+b \sin \beta) \underline{i}+b \dot{\beta} \cos \beta \underline{j} \underline{\dot{j}}-b \dot{\beta} \sin \beta \underline{\underline{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{a}_{A}= a_{0}+\dot{\Omega} \times r_{A / 0}+\Omega \times\left(\Omega \times r_{N O}\right)+2 \Omega \times v_{r e l}+a_{r e l} \\
& \underline{a}_{0}=-R \Omega^{2}, \underline{j}=\underline{\Omega}, \underline{\Omega} \times\left(\underline{\Omega} \times r_{A / D}\right)=\Omega \underline{k} \times(\Omega \underline{k} \times b[\sin \beta \underline{j}+\cos \beta \underline{k}]) \\
& 2 \Omega \times \underline{v}_{r e l}=2 \Omega \underline{\Omega} \underline{k} \times b \dot{\beta}(\cos \beta \underline{j}-\sin \beta \underline{k}), \underline{a}_{r e l}=b \dot{\beta}^{2}(\sin \beta \underline{j}+\cos \beta \underline{k})
\end{aligned}
$$

Combine, collect terms, \&get

$$
\underline{a}_{A}=-2 b \Omega \dot{\beta} \cos \beta \underline{i}-\left(\Omega^{2}[R+b \sin \beta]+b \dot{\beta}^{2} \sin \beta\right) \underline{j}-b \dot{\beta}^{2} \cos \beta \underline{k}
$$

$7 / 43 \Omega=$ angular velocity of axes $x-y-z=\frac{2 \pi N_{j}}{60}=\pi j \frac{\mathrm{rad}}{\mathrm{s}}$ $\underline{v}=\underline{v}_{A}=\underline{v}_{B}+\underline{\Omega}^{2} \times r_{A / B}+\underline{v}_{r e l}$
where $\underline{v}_{B}=\pi \underline{j} \times \underline{r}_{O B}=\pi \underline{j} \times(-0.18 \underline{i}+0.1 \underline{k})=\pi(0.1 \underline{i}+0.18 \mathrm{k}) \mathrm{m} / \mathrm{s}$

$$
\underline{\Omega} \times r_{A / B}=\pi \underline{j} \times 0.1 \underline{i}=-0.1 \pi \underline{k} \mathrm{~m} / \mathrm{s}
$$

$$
\underline{v}_{r e l}=p k \times \bar{r}_{A / B}=\frac{240(2 \pi)}{60} \underline{k} \times 0.1 \underline{i}=0.8 \pi \underline{j} / \mathrm{s}
$$

Collect terms \& get $\underline{v}=\pi(0.1 \underline{i}+0.8 j+0.08 \underline{k}) \mathrm{m} / \mathrm{s}$

$$
a=a_{A}=a_{B}+\dot{\Omega} \times r_{A / B}+\Omega \times\left(\underline{\Omega} \times r_{A / B}\right)+2 \underline{\Omega} \times v_{r e l}+a_{r e l}, \dot{\Omega}=0
$$

where $\underline{a}_{B}=\underline{\Omega} \times\left(\underline{\Omega} \times \underline{r}_{B / 0}\right)=\pi \underline{j} \times(\pi \underline{j} \times[-0.18 \underline{i}+0.1 \underline{k}])$

$$
=\pi^{2}(0.18 i-0.1 \mathrm{k}) \mathrm{m} / \mathrm{s}^{2}
$$

$\underline{\Omega} \times\left(\underline{\Omega} \times r_{A / B}\right)=\pi \underline{j} \times(-0.1 \pi \underline{k})=-0.1 \pi^{2} \underline{i} \mathrm{~m} / \mathrm{s}^{2}$
$2 \underline{\Omega} \times \underline{v}_{r e l}=2 \pi j \times 0.8 \pi \underline{j}=\underline{0}$
$\underline{a}_{\text {rel }}=\dot{j} \underline{k} \times \underline{r}_{A / B}+\underline{r}_{A / B} p^{2}(-\underline{i})=\underline{0}-(8 \pi)^{2} 0.1 \underline{i}=-6.4 \pi^{2} \underline{\underline{i}} \frac{m}{s^{2}}$
collect terms $\&$ get.

$$
\begin{aligned}
& \underline{a}=-0.1 \pi^{2} \underline{i}-6.4 \pi^{2} \underline{i}+0.18 \pi^{2} \underline{i}-0.1 \pi^{2} \underline{u} \\
& \underline{a}=-\pi^{2}(6.32 \underline{i}+0.1 \underline{k}) \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

7/44 Angular velocity of drum is

$$
\begin{aligned}
& \underline{\omega}=(-p \cos \theta) \underline{\underline{~}}+\dot{\theta} \underline{j}+(p \sin \theta+\Omega) \underline{k} \text { from } \underline{q} \cdot 7 / 7 \\
& \underline{\alpha}=\underline{\omega}=(p \dot{\theta} \sin \theta) \underline{\underline{c}}+(p \dot{\theta} \cos \theta) \underline{k}+\underline{\Omega} \times \underline{\omega}
\end{aligned}
$$

But angular velocity of axes is $\Omega=\Omega k$, so

$$
\begin{aligned}
\underline{\alpha}= & (p \dot{\theta} \sin \theta) \underline{i}+(p \dot{\theta} \cos \theta) \underline{k} \\
& +\Omega \underline{k} \times[(-p \cos \theta) \underline{i}+\dot{\underline{j}}+(p \sin \theta+\Omega) \underline{k}] \\
= & (p \dot{\theta} \sin \theta) \underline{i}+(p \dot{\theta} \cos \theta) \underline{k}-(p \Omega \cos \theta) \underline{j}-\Omega \dot{\theta} \underline{i} \\
= & \dot{\theta}(p \sin \theta-\Omega) \underline{i}-(p \Omega \cos \theta) \underline{j}+(p \dot{\theta} \cos \theta) \underline{k}
\end{aligned}
$$

$7 / 45$ Angular velocity of axes $\Omega=\Omega k$

$$
\text { ". " " panels } \underline{\omega}=-\dot{\theta} \dot{j}+\Omega \underline{Y}
$$

$$
\begin{aligned}
\underline{\underline{\omega}}=-\dot{\theta} \underline{j}+\Omega \underline{\underline{k}}=-\dot{\theta}(\Omega \times \underline{j}) & +\Omega(\underline{\Omega} \times \underline{k})=\Omega \times \underline{\omega}=\Omega \dot{\theta} \underline{i} \\
& =\frac{1}{2} \frac{1}{4} \underline{i}=\frac{1}{8} \underline{i} \mathrm{rad} / \mathrm{sec}^{2}
\end{aligned}
$$

$$
\underline{a}_{A}=\underline{a}_{0}+\underline{\Omega} \times \underline{I}_{A / 0}+\Omega \times\left(\underline{\Omega} \times I_{A / 0}\right)+\frac{1}{2 \Omega \times v_{r o l}+\underline{a}_{r e}}
$$

$$
\underline{a}_{0}=\underline{0} ; \quad \underline{\Omega} \times \underline{I}_{4 / 0}=\frac{1}{2} \leftarrow \times(-\underline{i}+8 \underline{j}+\sqrt{3} \underline{k})=-\frac{1}{2} \underline{j}-4 \underline{i} \frac{f t}{5 \mathrm{ec}}
$$

$$
\Omega \times\left(\Omega \times I_{A / 0}\right)=\frac{1}{2} k \times\left(-\frac{1}{2} j-4 i\right)=\frac{1}{4} \underline{i}-2 \underline{j}+1 / \sec ^{2}
$$

$$
2 \underline{\Omega} \times \underline{v}_{r e l}=2\left(\frac{1}{2} k\right) \times\left(-\frac{\sqrt{3}}{4} \underline{i}-\frac{1}{4} k\right)=-\frac{\sqrt{3}}{4} \underline{j} f+/ \mathrm{sec}^{2}
$$

$$
\underline{a}_{n e 1}=2\left(\frac{1}{4}\right)^{2}\left(\frac{1}{2} \dot{i}-\frac{\sqrt{3}}{2} k\right)=\frac{1}{16} \underline{i}-\frac{\sqrt{3}}{16} k+1 / \sec ^{2}
$$

$$
\underline{a}_{A}=\left(\frac{1}{4}+\frac{1}{16}\right) \underline{i}+\left(-2-\frac{\sqrt{3}}{4}\right) \underline{j}-\frac{\sqrt{3}}{16} \underline{k}
$$

$$
=0.313 \underline{i}-2.43 \underline{j}-0.1083 \underline{k} \mathrm{ft} / \sec ^{2}
$$

with $a_{A}=2.45 \mathrm{ft} / \mathrm{Joc}{ }^{2}$

7/46 Angular velocity of $x-y-z$ axes is

$$
\Omega=-\omega_{1} \underline{i}+\omega_{2} \underline{J}
$$

$$
\underline{V}=\underline{V}_{A}=v_{B}+\Omega \times \underline{I}_{A / B}+\underline{v}_{r e l}
$$

where $v_{\beta}=b \omega_{2}(-k)=-b \omega_{2} k$

$$
\begin{aligned}
\Omega \times r_{\Delta / \beta} & =\left(-\omega, \underline{i}+\omega_{2} \underline{J}\right) \times r \underline{j}=-r, \omega, \underline{k} \\
\underline{V}_{e l} & =-r p \underline{i}
\end{aligned}
$$

Thus $\underline{v}=-b \omega_{2} k-r \omega_{1} \underline{k}-r p i=-r p i-\left(r \omega_{1}+b \omega_{2}\right) \underline{k}$

$$
a=a_{A}=a_{B}+\underline{\Omega} \times \underline{r}_{A / B}+\underline{\Omega} \times\left(\underline{\Omega} \times r_{A / B}\right)+2 \underline{\Omega} \times \underline{v}_{r e l}+\underline{a}_{r e l}
$$

where $a_{B}=-b \omega_{2}^{2} i$

$$
\begin{aligned}
& \underline{\Omega}=-\omega_{1} \underline{i}+\omega_{2} \underline{j}=-\omega_{1} \underline{\Omega} \underline{i}=\omega_{1} \omega_{2} \underline{k} \\
& \underline{\Omega} \times\left(\Omega \times r_{A / \beta}\right)=\left(-\omega_{1} \underline{i}+\omega_{2} \underline{J}\right) \times\left(-r \omega_{1} \underline{k}\right)=-r \omega_{1}\left(\omega_{1} \underline{j}+\omega_{2} \underline{i}\right) \\
& 2 \Omega \times \underline{v}_{r e l}=2\left(-\omega_{1} \underline{i}+\omega_{2} \underline{J}\right) \times(-r p \underline{i})=2 r p \omega_{2} \underline{\underline{~}} \\
& \underline{a_{r e l}}=-r p^{2} \underline{\underline{j}} \times \underline{r}_{A / B}=\omega_{1} \omega_{2} \underline{k} \times r \underline{j}=-r \omega_{1} \omega_{2} \underline{i}
\end{aligned}
$$

Substitute, combine \notin get

$$
\underline{a}=-\omega_{2}\left(b \omega_{2}+2 r \omega_{1}\right) \underline{i}-r\left(\omega_{1}^{2}+p^{2}\right) \underline{j}+2 r o \omega_{2} \underline{k}
$$

$7 / 47 \mathrm{\Omega}=$ angular velocity of axes $x-y-z$

$$
\underline{\omega}=" \text { " " simulator }=\Omega+p
$$

Let $N=$ angular velocity of frame $=0.2 \mathrm{rad} / \mathrm{s}$ cont.
$p=0.9 \mathrm{rad} / \mathrm{s}$ const., $\dot{\beta}=0.15 \mathrm{rad} / \mathrm{s}$ const.

$$
\begin{aligned}
& \underline{\Omega}=\underline{i} \dot{\beta}+\underline{j} N \cos \beta-\underline{k} N \sin \beta ; \underline{p}=p \underline{k} \\
& \underline{w}_{\beta=0}=0.15 \underline{i}+0.2 \underline{j}+0.9 \underline{k} \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

From Eq. $7 / 7, \alpha=\left(\frac{d \underline{\omega}}{d t}\right)_{X Y Z}=\left(\frac{d \underline{\omega}}{d t}\right)_{X y z}+\Omega x \underline{\omega}$

$$
\begin{aligned}
& \alpha=(\underline{0}-\underline{j} N \dot{\beta} \sin \beta-\underline{k} N \dot{\beta} \cos \beta+\underline{Q})+\underline{\Omega} \times(\Omega+\underline{p}) \\
& \text { where } \underline{\Omega} \times(\underline{\Omega}+\underline{\underline{R}})=\underline{\Omega} \times \underline{p}=(\dot{i} \dot{\beta}+j N \cos \beta-\underline{k} N \sin \beta) \times p \underline{k} \\
&=\underline{i} N p \cos \beta-\underline{j} \dot{\beta}
\end{aligned}
$$

so $\alpha_{\beta=0}=\underline{i} N_{p}-\underline{j} p \dot{\beta}-\underline{K} N \dot{\beta}$

$$
=0.2(0.9) \dot{i}-0.9(0.15) \underline{j}-0.2(0.15 \mathrm{k}) \mathrm{rad} / \mathrm{s}^{2}
$$

$$
=0.18 \underline{i}-0.135 \underline{j}-0.030 k \mathrm{rad} / \mathrm{s}^{2}
$$

7/48 From Sample Problem $7 / 2$
$\Omega=2 \pi \mathrm{rad} / \mathrm{sec}, \omega_{y}=\sqrt{3} \pi \mathrm{rad} / \mathrm{sec}, \omega_{z}=5 \pi \mathrm{rad} / \mathrm{sec}, \omega_{0}=4 \pi \frac{\mathrm{rad}}{\mathrm{sec}}$ Also $\omega_{x}=-\dot{\gamma}=-3 \pi \mathrm{rad} / \mathrm{sec}$
in general $\underline{\omega}=\left(-\dot{\gamma} \underline{i}+\Omega \cos \gamma \underline{j}+\left[c \omega_{0}+\Omega \sin \gamma\right] \underline{k}\right)$
For $\gamma=30^{\circ}, \omega=\pi(-3 \underline{i}+\sqrt{3} \underline{j}+5 \underline{k}) \mathrm{rad} / \mathrm{sec}$
From Eq, 7/7 $\underline{\alpha}=[d \underline{\omega} / d t]_{x y z}=[d \underline{\omega} / d t]_{x y 2}+\underline{\omega}_{a x e s} \times \underline{0}$

$$
\begin{aligned}
& \text { But }[d \underline{\omega} / d t]_{x y z}=(0-\Omega \dot{\gamma} \sin \gamma \underline{j}+\Omega \dot{\gamma} \cos \gamma \underline{k}) \\
& =6 \pi^{2}\left(-\frac{1}{2} j+\frac{\sqrt{3}}{2} \underline{k}\right)=3 \pi^{2}(-j+\sqrt{3} \underline{G}) \mathrm{rad} / \mathrm{sec}^{2} \\
& \omega_{\text {axes }}=\omega-\omega_{0} \underline{K} \not \omega_{\text {axes }} \times \underline{\omega}=\left(\underline{\omega}-\omega_{0} \underline{K}\right) \times \underline{0}=-\omega_{0} K \times \underline{0} \\
& \text { so } \underline{\omega}_{\text {axes }} \times \underline{0}=-4 \pi k \times \pi(-3 \underline{i}+\sqrt{3} \underline{j}+5 \underline{k})=4 \pi^{2}(\sqrt{3} \underline{i}+3 \underline{j}) \frac{\mathrm{rad}}{\sec ^{2}}
\end{aligned}
$$

Thus $\underline{\alpha}=3 \pi^{2}(-j+\sqrt{3} \underline{k})+4 \pi^{2}(\sqrt{3} \underline{i}+3 \underline{j})$

$$
=\pi^{2}(4 \sqrt{3} \underline{i}+\underline{j}+3 \sqrt{3} \underline{k}) \quad \mathrm{rad} / \mathrm{sec}^{2}
$$

Angular velocity of axes is $\Omega=I_{p}$ so

$$
\underline{\omega}=\underline{\Omega}+\left(\frac{R p}{r}\right) \underline{k} \text {; Now use }\left(\frac{d[]}{d t}\right)_{X Y Z}=\left(\frac{d[]}{d t}\right)_{x y z}+\underline{\Omega} \times[]
$$

Noting Ω is constant in $X Y Z \notin x y z$.
Thus $\underline{\alpha}=\left(\frac{d \omega}{d t}\right)_{X Y Z}=0+\underline{\Omega} \times\left[\underline{\Omega} \times \frac{R_{p}}{r} k\right]=\Omega \times \frac{R_{p}}{r} k$

$$
\alpha=[(p \cos \theta) \underline{j}+(p \sin \theta) \underline{k}] \times \frac{R_{p}}{r} \underline{k}, \underline{\alpha}=\left(\frac{R_{p}^{2}}{r} \cos \theta\right) \underline{i}
$$

or morals $\underline{\alpha}=\underline{\dot{u}}=\underline{0}+\frac{R_{p}}{r} \underline{\underline{i}}=\frac{R_{p}}{r}(\underline{\Omega} \times k)$, et.
-7/50 Angular vel, of $x-y-z$ is $\underline{\Omega}=\underline{i} 9 \sin \theta-j \dot{\theta}+k q \cos \theta$

$$
\underline{a}=a_{A}=a_{0}+\underline{\Omega}^{\infty} \times r_{-A / 0}+\Omega \times\left(\Omega_{\Omega} \times r_{A / 0}\right)+2 \Omega_{0} \times \underline{v}_{r e l}+\underline{a}_{r e l}
$$

where $a_{0}=-6\left(8^{2}\right) \underline{j}=-384 j$ in. $/ \mathrm{sec}^{2} ; r_{A / O}=6 i-4 \mathrm{~K} \mathrm{in}$.

$$
\begin{aligned}
& \dot{\Omega}=\Omega \times \underline{\Omega}+\underline{i} q \dot{\theta} \cos \theta+\underline{0}-\underline{k} q \dot{\theta} \sin \theta \text { by Ecg. 7/7a } \\
& =q \dot{\theta}(\underline{i} \cos \theta-\underline{k} \sin \theta)=8(\sqrt{3} \underline{i}-k) \mathrm{rad} / \mathrm{sec}^{2} \\
& \dot{\Omega} \times r_{A / 0}=8(\sqrt{3} \underline{i}-\underline{k}) \times(6 \underline{i}-4 \underline{k})=16(2 \sqrt{3}-3) \underline{j}=7.43 j \mathrm{in} . / \mathrm{sec}^{2} \\
& \Omega \times\left(\Omega \times r_{A / 0}\right)=-423 \underline{i}+7.43 j+246 k i n .1 \sec ^{2} \\
& 2 \underline{\Omega} \times \underline{\underline{V} e l}=2(4 \underline{i}-2 \underline{j}+4 \sqrt{3} \underline{k}) \times(+4[30] \underline{j})=960(-\sqrt{3} \underline{i}+\underline{k}) \frac{\mathrm{in} .}{\sec ^{2}} \\
& a_{\text {rel }}=4(30)^{2} \underline{k}=3600 \mathrm{k} \mathrm{in.} / \mathrm{sec}^{2}
\end{aligned}
$$

Combine
\downarrow get $a=-2090 \underline{i}-369 \underline{j}+4810 \underline{k} \mathrm{in} .1 \mathrm{sec}^{2}$

$$
\begin{aligned}
\underline{\omega}=\underline{\Omega}+p \underline{i}, \underline{\alpha} & =\dot{\dot{\omega}}=\underline{\underline{\Omega}}+p \underline{i}=\underline{\underline{~}}+p \underline{\Omega} \times \underline{i} \\
& =8(\sqrt{3} \underline{i}-k)+30(4 \underline{i}-2 \dot{j}+4 \sqrt{3} k) \times \underline{i} \\
\underline{\alpha} & =8 \sqrt{3} \underline{i}+120 \sqrt{3} \underline{j}+52 \underline{k} \mathrm{rad} / \mathrm{sec}^{2}
\end{aligned}
$$

$7 / 51$ Arigular velocity of axes $=\Omega$ where" " $=100(2 \pi) / 60$ " rotor $=\underline{\omega}=\underline{\Omega}+p \underline{\underline{N}}$ where $p=100(2 \pi) / 60=10 \pi / 3 \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& \underline{\Omega}=-\dot{\gamma} \underline{i}+\underline{j} \omega_{1} \cos \gamma+\underline{k} \omega_{1} \sin \gamma, \omega_{1}=\frac{2 \pi}{60} 20=\frac{2 \pi}{3} \frac{\mathrm{rad}}{\mathrm{~s}} \\
& \underline{\alpha}=\left(\frac{d \underline{\omega}}{d t}\right)_{x Y z}=\left(\frac{d \underline{\omega}}{d t}\right)_{x y z}+\Omega \times \underline{\omega} \quad\left(E_{q} \cdot 8 / 7\right) \\
& \left(\frac{d \omega}{d t}\right)_{x y z}=\left(\frac{d \Omega}{d t}\right)_{x y z}+0=0-j \dot{\gamma} \omega_{1} \sin \gamma+\underline{k} \dot{\gamma} \omega_{1} \cos \gamma \\
& \underline{\Omega} \times \underline{\omega}=\underline{\Omega} \times(\underline{\Omega}+p \underline{k})=\underline{\Omega \times p k}=\dot{\gamma} \underline{j}+p \omega_{1} \cos \gamma \underline{i} \\
& \underline{\alpha}=\left(\dot{\gamma} p-\dot{\gamma} \omega_{1} \sin \gamma\right) \underline{j}+p \omega_{1} \cos \gamma \underline{i}+\dot{\gamma} \omega_{1} \cos \gamma \underline{K}
\end{aligned}
$$

substitute $\dot{j}^{\dot{\prime}}=4 \mathrm{rad} / \mathrm{s}, p=10 \pi / 3 \mathrm{raa} / \mathrm{s}, c_{1}=2 \pi / 3 \mathrm{rad} / \mathrm{s}$
$\$$ get

$$
\begin{aligned}
\underline{\alpha} & =\left(4 \frac{10 \pi}{3}-4 \frac{2 \pi}{3} \frac{1}{2}\right) \underline{j}+\frac{10 \pi}{3} \frac{2 \pi}{3} \frac{\sqrt{3}}{2} \underline{i}+4 \frac{2 \pi}{3} \frac{\sqrt{3}}{2} \underline{k} \\
& =12 \pi \underline{j}^{\prime}+\frac{10 \pi^{2}}{3 \sqrt{3}} \underline{i}+\frac{4 \pi}{\sqrt{3}} k=18.99 \underline{k}+37.70 j+7.25 \underline{\mathrm{rad}} \frac{\mathrm{~s}}{\mathrm{~s}^{2}} \\
\alpha & =\sqrt{18.99^{2}+\overline{37.70}^{2}+\overline{7.25}^{2}}=42.8 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

7/52 Attach origin of translating axes to B with $x-y-z$ parallel to $X-Y-Z$
$\underline{U}_{A}=\underline{U}_{B}+\underline{U} \times r_{A / B}$ \& note that $\underline{\omega} \cdot \underline{J} \times\left(\underline{r}_{A / B} \times \underline{J}\right)=0$ where $\underline{\cup}=\underline{\bigcup}=$ unit vector in Y-dir.
$v_{-A}=v_{A} \underline{j}, v_{B}=r \omega_{0}(-\underline{i})=-0.080(4) \underline{i}=-0.32 \underline{i} \mathrm{~m} / \mathrm{s}$
y-coord of A is $\sqrt{0.300^{2}-0.100^{2}-0.200^{2}}=0.200 \mathrm{~m}$
$r_{A / B}=-0.1 \underline{i}+0.2 \underline{j}+0.2 \underline{k} \mathrm{~m} ;$
Thus $v_{A} \underline{j}=-0.32 \underline{i}+\left|\begin{array}{ccc}\underline{i} & \underline{j} & \underline{k} \\ \omega_{x} & \omega_{y} & \omega_{z} \\ -0.1 & 0.2 & 0.2\end{array}\right|$
Expand $\&$ equate coefficients to sot

$$
\begin{aligned}
& 0.2 \omega_{y}-0.2 \omega_{z}=0.32 \\
& 0.2 \omega_{x} \quad+0.1 \omega_{z}=-v_{A} \quad \cdots(2) \\
& 0.2 \omega_{x}+0.1 \omega_{y}=0 \quad \cdots-(3) \\
& \text { Also }\left(\underline{i} \omega_{x}+\underline{j} \omega_{y}+\underline{k} \omega_{z}\right) \cdot \underline{j} \times[(-0.1 \underline{i}+0.2 \underline{j}+0.2 \underline{k}) \times \underline{j}]=0 \\
& \text { which gives } \omega_{x}-2 \omega_{z}=0 \cdots(-.-(4) \\
& \text { Solve (1), (2) (3), (4) \& get } \omega_{x}=-0.64, \omega_{y}=1.28, \omega_{z}=-0.32 \\
& v_{A}=0.160 \underline{j} \mathrm{~m} / \mathrm{s}, \underline{C}=0.32(-2 \underline{i}+4 \underline{j}-k) \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 53 \text { with } \omega_{x}=\omega_{y}=0, \omega_{z}=-w, \\
& H_{0_{x}}=-I_{x z} \omega_{z}, H_{0_{y}}=-I_{y z} \omega_{z}, H_{0_{z}}=I_{z 7} \omega_{z} \\
& I_{x z}=m b^{2}, I_{y z}=2 m b^{2}, I_{z z}=2 m b^{2} \\
& H_{0}=-m b^{2}(-\omega) \underline{i}-2 m b^{2}(-\omega) \underline{j}+2 m b^{2}(-\omega) \underline{k} \\
& H_{0}=m b^{2} w(\underline{i}+2 \underline{j}-2 \underline{k}), H_{0}=3 m b \omega^{2} \\
& \underline{G}=\sum m_{i} \underline{v}_{i}=m b w(\underline{i}-\underline{j}), \underline{G}=m b \omega \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 54 \text { with } w_{x}=w_{y}=0, w_{z}=-w \\
& H_{0_{x}}=-I_{x z} w_{z}, H_{0_{y}}=-I_{y z} w_{z}, H_{0_{z}}=I_{z z} w_{z} \\
& I_{x z}=m b^{2}, I_{y z}=2 m b^{2}, I_{z z}=\frac{1}{6} m l^{2}+2 m b^{2} \\
& H_{0}=-m b^{2}(-w) \underline{i}-2 m b^{2}(-w) j+\left(\frac{1}{6} m l^{2}+2 m b^{2}\right)(-w) \underline{k} \\
& H_{0}=m b^{2} w\left(\underline{i}+2 \underline{j}-\left[\frac{1}{6}\left(\frac{l}{b}\right)^{2}+2\right] \underline{k}\right)
\end{aligned}
$$

7/55 $x-y-z$ are principal axes so

$$
\begin{aligned}
& H=I_{x x} \omega_{x} i+I_{y y} \omega_{y \underline{j}}+I_{z z} \omega_{z} \underline{k} \\
& I_{z z}=m k^{2} \\
& =45(0.370)^{2}=6.16 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& I_{x x}+I_{y y}=I_{z z} \& I_{x x}=I_{y y} \\
& \text { so } I_{y y}=\frac{1}{2} I_{z z}=3.08 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

About $G, \underline{H}_{G}=\underline{0}+3.08(-0.524) \underline{j}+6.16(-120.8) \underline{k}$

$$
\underline{H}_{G}=-1.613 \underline{j}-744 \underline{k} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
$$

About $A, I_{y y}=\bar{I}_{y y}+m d^{2}=3.08+45(0.215)^{2}=5.16 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

$$
\begin{aligned}
& \underline{H}_{A}=\underline{0}+5.16(-0.524) \underline{j}+6.16(-120.8) \underline{k} \\
& \underline{H}_{A}=-2.70 \underline{j}-744 \underline{\mathrm{k}} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
7 / 56
\end{aligned}{ }^{1} \begin{aligned}
\omega & \omega_{x}=\omega_{y}
\end{aligned}=\omega_{z}=\omega / \sqrt{3}
$$

$$
\begin{aligned}
& 7 / 5.7 \mid \text { with } \omega_{x}=\omega_{y}=0, \\
& E_{q} .7 / 11 \text { gives } \\
& H_{0}=\left(-I_{x z} \underline{i}-I_{y z} \underline{j}+I_{z z} \underline{k}\right) \omega
\end{aligned}
$$

Part	$I_{x z}$	$I_{y z}$	$I_{z z}$	$\left\{\left(I_{z z}\right)_{3}=\frac{1}{12} \rho b b^{2}+\rho b\left(b^{2}+\left[\frac{b}{2}\right]^{2}\right)\right\}$
1	0	0	$\frac{1}{3} \rho b^{3}$	$=\frac{4}{3} \rho b^{3}$
2	0	$\frac{1}{2} \rho b^{3}$	ρb^{3}	
3	$\frac{1}{2} \rho b^{3}$	$\frac{\rho b^{3}}{}$	$\frac{4}{3} \rho b^{3}$	
Totals	$\frac{1}{2} \rho b^{3}$	$\frac{3}{2} \rho b^{3}$	$\frac{8}{3} \rho b^{3}$	

so $H_{0}=\rho b^{3}\left(-\frac{1}{2} \underline{i}-\frac{3}{2} \underline{j}+\frac{8}{3} \underline{k}\right) \omega$

$$
T=\frac{1}{2} \underline{\omega} \cdot \underline{H}_{0}=\frac{1}{2} \omega \cdot \frac{8}{3} \rho b^{3} \omega, \quad T=\frac{4}{3} \rho b^{3} \omega^{2}
$$

$$
\text { With } \omega_{x}=\omega_{y}=0 \text {, }
$$

Eq. $7 / 11$ gives

$$
H_{0}=-I_{x z} \omega_{z} \underline{i}-I_{y z} \omega_{z} \underline{j}+I_{z z} \omega_{z} \underline{k}
$$

Mass per unit of s is $\frac{12}{0.300}=40 \frac{\mathrm{~kg}}{\mathrm{~m}}$

$$
I_{y z}=2 \int_{0}^{0.150}\left(s \cos 15^{\circ}\right)\left(-s \sin 15^{0}\right) 40 d s
$$

$$
\begin{aligned}
& =-40 \sin 30^{\circ} \times\left.\frac{5^{3}}{3}\right|_{0} ^{0.150} \\
& =-0.0225 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned} \quad \omega_{z}=\frac{300 \times 2 \pi}{60}=31.4 \mathrm{rad} / \mathrm{s}
$$

$$
=-0.0225 \mathrm{~kg} \cdot \mathrm{~m}^{3}{ }^{10}
$$

$$
I_{z z}=\frac{1}{12} 12\left\{0.240^{2}+\left(0.300 \cos 15^{\circ}\right)^{2}\right\}=0.1416 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

By symmetry $I_{x z}=0$

$$
\begin{aligned}
& \underline{H}_{0}=\underline{0}-0.0225(31.4) \underline{j}+0.1416(31.4) \underline{\mathrm{k}} \\
& \underline{H}_{0}=-0.707 \underline{j}+4.45 \underline{\mathrm{k}} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} \\
& T=\frac{1}{2} \underline{\omega} \cdot H_{0}=\frac{1}{2}(31.4 \underline{\mathrm{k}}) \cdot(-0.707 \underline{j}+4.45 \underline{\mathrm{k}}) \\
& T=69.9 \mathrm{~J}
\end{aligned}
$$

7.159 as $\omega_{x}=\omega_{z}=0, \omega_{y}=\omega$, so
$Z_{1} \lambda^{+d s}$ Eg. $7 / 11$ gives
$\underline{H}=\left(-\dot{\underline{\prime}} I_{x y}+\underline{j} I_{y y}-k I_{y z}\right) \omega$
$0 \cdots \omega_{y} \quad$ But $I_{x y}=0$
$d I_{y z}=\int y z d m=\int_{0}^{\ell}(s \cos \theta)(s \sin \theta) \rho d s$
where $\rho=$ mass per unit length

$$
\text { so } \begin{aligned}
I_{y z} & =\rho \sin \theta \cos \theta \frac{\ell^{3}}{3}=\frac{1}{3} m \ell^{2} \sin \theta \cos \theta \\
\begin{array}{rl}
H & H
\end{array} & =\left[\underline{i}(0)+j \frac{1}{3} m \ell^{2} \sin ^{2} \theta-\underline{k} \frac{1}{3} m \ell^{2} \sin \theta \cos \theta\right] \omega \\
& =\frac{1}{3} m \ell^{2} \omega \sin \theta(\underline{j} \sin \theta-\underline{k} \cos \theta)
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 60 \quad \omega_{x}=\omega_{y}=0, \omega_{z}=\omega \\
& I_{x z}=0, I_{y z}=0+m\left(\frac{4 r}{3 \pi}\right)\left(c+\frac{6}{2}\right), I_{z z}=\frac{1}{2} m r^{2} \\
& \text { so } H=-I_{y z} \omega_{z} j+I_{z z} \omega_{z} \underline{-} \\
& H=\operatorname{mr\omega }\left[-\frac{2(2 c+b)}{3 \pi} \underline{j}+\frac{r}{2} k\right]
\end{aligned}
$$

$7 / 61$ About G,

$$
\begin{aligned}
& H_{x_{1}}=I\left(\Omega_{x}+p\right) \\
& H_{x_{2}}=\left(\frac{I}{2}+m b^{2}\right) \Omega_{x} \\
& H_{x_{3}}=\left(\frac{I}{2}+m b^{2}\right) \Omega_{x}
\end{aligned}
$$

$$
\text { so } H_{x}=I\left(\Omega_{x}+p\right)+\left(I+2 m b^{2}\right) \Omega_{x}
$$

similarly

$$
\begin{aligned}
H_{y} & =I p+2\left(I+m b^{2}\right) \Omega_{y} \\
H_{z} & =I p+2\left(I+m b^{2}\right) \Omega_{z} \\
\text { Thus } H_{G} & =\frac{I_{p}(\underline{i}+\underline{j}+\underline{k})+2\left(I+m b^{2}\right) \Omega}{\text { where } \Omega=\Omega_{x} \underline{i}+\Omega_{y} \underline{j}+\Omega_{z} \underline{K}}
\end{aligned}
$$

$$
=I_{p}+2\left(I+m b^{2}\right) \Omega_{x}
$$

$7 / 62$ K $\mathscr{H}_{0}=\bar{H}+\overline{r x} \underline{G} ; \omega_{x}=\omega, \omega_{y}=p, \omega_{z}=0$
where $F_{x}=\left(\frac{1}{12} m b^{2}+\frac{1}{4} m r^{2}\right) \omega$
$\vec{H}_{y}=\frac{1}{2} m r^{2} p, \vec{F}_{z}=0$
$\bar{r}=-\frac{b}{2} \underline{j}+h \underline{k}, \underline{G}=-m h \omega j-m \frac{b}{2} \omega \underline{k}$
$\overline{\underline{E}} \times \underline{G}=\left(-\frac{b}{2} \underline{j}+h \underline{k}\right) \times(-m \omega)\left(h \underline{j}+\frac{b}{2} \underline{k}\right)$

$$
=\frac{m b^{2}}{4} w \underline{i}+m h^{2} w i=m w\left(h^{2}+\frac{b^{2}}{4}\right) \underline{i}
$$

Thus

$$
\begin{aligned}
& H_{0}=m \omega\left(\frac{b^{2}}{12}+\frac{r^{2}}{4}+h^{2}+\frac{b^{2}}{4}\right) \underline{i}+\frac{1}{2} m r^{2} p \dot{j} \\
& H_{0}=\left(\frac{b^{2}}{3}+\frac{r^{2}}{4}+h^{2}\right) m \omega \underline{i}+\frac{1}{2} m r^{2} p \underline{j}
\end{aligned}
$$

$$
H_{0}=-I_{x z} \omega_{z} \underline{i}-I_{y z} \omega_{z} j+I_{z z} \omega_{z} \underline{k}
$$

$$
0_{z}+-\|--x I_{x z}=0
$$

$$
I_{y z}=\int_{-\frac{1}{2}}^{\frac{\underline{1}}{2}}(s \cos \beta)(-s \sin \beta) \rho d s
$$

$$
\text { where } p=\text { mass/ unit length }
$$

$$
=-\left.\rho \sin \beta \cos \beta \frac{s^{3}}{3}\right|_{-L / 2} ^{L / 2}=-\rho \frac{L^{3}}{24} \sin 2 \beta
$$

$$
\begin{aligned}
& =-\frac{6.20 / 32.2}{28 / 2} \frac{(28 / 12)^{3}}{24} \sin 60^{\circ} \\
& =-0.03781 \mathrm{~b}-\mathrm{ft}-\sec ^{2} \\
I_{\bar{z}}^{\prime} & =I_{0}=\frac{1}{12} m L^{2}+m d^{2} \\
& =\frac{6.20}{32.2}\left[\left(\frac{28 \cos 30^{\circ}}{12}\right)^{2} \frac{1}{12}+\left(\frac{16}{12}\right)^{2}\right] \\
& =0.4081 \mathrm{l}-\mathrm{ft}-\sec ^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{H}_{0}=\left(-I_{x z} \underline{i}-I_{y z} \underline{j}+I_{z z} \underline{k}\right) \omega_{z}=(\underline{0}-[-0.0378] \underline{j}+0.408 \underline{k}) \frac{600 \times 2 \pi}{60} \\
& H_{0}=2.38 \underline{j}+25.6 \underline{\underline{k}} 16-f t-\mathrm{sec}
\end{aligned}
$$

From Eq. $7 / 18 \quad T=\frac{1}{2} \underline{\omega} \cdot H_{0}=\frac{1}{2} \omega_{z} \underline{k} \cdot \underline{H}_{0}$

$$
=\frac{1}{2} \frac{600 \times 2 \pi}{60} \times 25.6=805 \mathrm{ft}-16
$$

7164 Introduce axes $x^{\prime}-y^{\prime}-z^{\prime}$ as shown. $\omega \sin \alpha, \quad \omega_{y^{\prime}}=0, \quad \omega_{z^{\prime}}=\omega \cos \alpha$

$$
I_{x x^{\prime}}=I_{y^{\prime} y^{\prime}}=\frac{1}{4} m r^{2}
$$

$$
I_{z^{\prime} z^{\prime}}=\frac{1}{2} m r^{2}
$$

$1 \alpha 1$
$z^{\prime} z$ Eq. 7/11 yields

$$
\begin{aligned}
& \underline{H}=\left(\frac{1}{4} m r^{2}\right) \omega \sin \alpha \underline{i}^{\prime}+\left(\frac{1}{2} m r^{2}\right) \omega \cos \alpha \underline{k}^{\prime} \\
& \text { But }\left\{\begin{array}{l}
\underline{i}^{\prime}=\underline{i} \cos \alpha+\underline{k} \sin \alpha \\
\underline{k}^{\prime}=-\underline{i} \sin \alpha+\underline{k} \cos \alpha
\end{array}\right.
\end{aligned}
$$

Thus $\underline{H}=\frac{1}{4} m r^{2} \omega[(-\sin \alpha \cos \alpha) \underline{i}$

$$
\left.+\left(\sin ^{2} \alpha+2 \cos ^{2} \alpha\right) \underline{k}\right]
$$

$$
\beta=\cos ^{-1}\left(\frac{H \cdot \underline{k}}{H}\right)=4.96^{\circ} \text { for } \alpha=10^{\circ}
$$

7/65 With $\omega_{x}=\omega_{y}=0, \omega_{z}=\omega$, the components of H_{0} are $H_{0_{x}}=-I_{x z} \omega_{z}, H_{o_{y}}=-I_{y z} \omega_{z}, H_{o_{z}}=I_{z z} \omega_{z}$
By inspection

$$
I_{y z}=0, I_{x z}=0
$$

$$
J_{z z}=2\left(I_{G}+m d^{2}\right)
$$

$=2\left[\frac{1}{12} m(\ell \sin \beta)^{2}+m\left(b^{2}+\frac{l^{2}}{4} \sin ^{2} \beta\right)\right]$

$$
=2 m\left[\frac{1}{3} l^{2} \sin ^{2} \beta+b^{2}\right]
$$

Thus $H_{0}=2 m\left[\frac{1}{3} l^{2} \sin ^{2} \beta+b^{2}\right] \omega k$
$7 / 66$ Let $\Omega=$ angular velocity of $x-y-z$ about z_{0}
For axes: $\Omega_{x}=-\Omega \sin \theta, \Omega_{y}=\dot{\theta}=0, \Omega_{z}=\Omega \cos \theta ; \Omega=2 \pi f$
Capsule: $\omega_{x}=-\Omega \sin \theta, \omega_{y}=0, \omega_{z}=\Omega \cos \theta+p$

$$
\begin{aligned}
& H_{G_{x}}=\sigma_{x x} \omega_{x}=m k^{\prime 2}(-2 \pi f \sin \theta), \quad H_{G_{y}}=I_{y y} \omega_{y}=0 \\
& H_{G_{z}}=I_{z z} \omega_{z}=m k^{2}(2 \pi f \cos \theta+p) \\
& H_{G}=2 \pi m f\left(-k^{\prime 2} \sin \theta \leq+k^{2} \cos \theta \underline{k}\right)+m k^{2} p k
\end{aligned}
$$

$7 / 67 \omega_{x}=-\omega_{1}, \omega_{y}=\omega_{2}, \omega_{z}=p$
Eq. $7 / 14, H_{0}=H_{B}+\overrightarrow{O B} \times \underline{G}, \overrightarrow{O B}=6 \underline{i}, \underline{G}=m V_{B}$

$$
\begin{aligned}
& \overrightarrow{O B} x G=b i x\left(-m b \omega_{2} K\right)=-m b b^{2} \omega_{2} \underline{K} \\
& I_{x x}=\frac{1}{4} m r^{2}, I_{y y}=\frac{1}{4} m r^{2}, I_{z z}=\frac{1}{2} m r^{2}, I_{x y}=I_{x z}=I_{y z}=0
\end{aligned}
$$

Eq. $7 / 11, H_{B}=\frac{1}{4} m r^{2}\left(-\omega_{1}\right) \underline{i}+\frac{1}{4} m r^{2} \omega_{2} \underline{j}+\frac{1}{2} m r^{2} p \underline{k}$
so

$$
\begin{aligned}
H_{0} & =-\frac{1}{4} m r^{2} \omega_{1} \underline{i}+m \omega_{2}\left(b^{2}+\frac{r^{2}}{4}\right) \underline{j}+\frac{1}{2} m r^{2} p k \\
& =\frac{1}{4} m r^{2}\left\{-\omega_{1} \underline{i}+\left(1+\frac{4 b^{2}}{r^{2}}\right) \omega_{2} \underline{j}+2 p \underline{k}\right]
\end{aligned}
$$

From $E_{q} \cdot T / 15 \quad T=\frac{1}{2} \underline{v} \cdot m \underline{v}+\frac{1}{2} \omega \cdot H_{B}$
so $T=\frac{1}{2} m b^{2} \omega_{2}^{2}+\frac{1}{2}\left(-\omega_{1} \underline{i}+\omega_{2} \underline{j}+p \underline{k}\right) \cdot\left(-\frac{1}{4} m r^{2} \omega_{1} \underline{i}\right.$

$$
\begin{aligned}
& \left.\quad+\frac{1}{4} m r^{2} \omega_{2} j+\frac{1}{2} m r^{2} p k\right) \\
& =\frac{1}{2} m b^{2} \omega_{2}^{2}+\frac{1}{8} m r^{2}\left(\omega_{1}^{2}+w_{2}^{2}+2 p^{2}\right) \\
& =\frac{m r^{2}}{8}\left\{\omega_{1}^{2}+\left(1+\frac{4 b^{2}}{r^{2}}\right) \omega_{2}^{2}+2 p^{2}\right\}
\end{aligned}
$$

Use principal axes $x^{\prime} y^{\prime} z^{\prime}$

$$
\begin{aligned}
& \omega_{y^{\prime}}=\omega \sin \beta, \quad \omega_{z^{\prime}}=\omega \cos \beta \\
& I_{y^{\prime} z^{\prime}}=0, \quad I_{z^{\prime} z^{\prime}}=m r^{2}, \quad I_{y^{\prime} y^{\prime}} \\
& I_{x^{\prime} y^{\prime}}=I_{x^{\prime} z^{\prime}}=0 \\
& \underline{H}_{0}=I_{y^{\prime} y^{\prime}} \omega_{y^{\prime}} \underline{j}^{\prime}+I_{z^{\prime} z^{\prime}} \omega_{z^{\prime}} \underline{k}^{\prime} \\
& \text { But }\left\{\begin{array}{l}
\underline{j}^{\prime}=j \cos \beta+\underline{k} \sin \beta \\
k^{\prime}=-j \sin \beta+\underline{k} \cos \beta
\end{array}\right.
\end{aligned}
$$

$$
I_{y^{\prime} z^{\prime}}=0, \quad I_{z^{\prime} z^{\prime}}=m r^{2}, \quad I_{y^{\prime} y^{\prime}}=\frac{1}{2} m r^{2}
$$

So

$$
\begin{aligned}
\underline{H}_{0}= & \frac{1}{2} m r^{2} \omega \sin \beta(\underline{j} \cos \beta+\underline{k} \sin \beta) \\
& +m r^{2} \omega \cos \beta(-\underline{j} \sin \beta+\underline{k} \cos \beta) \\
= & m r^{2} \omega\left[-\frac{1}{4} \sin 2 \beta \underline{j}+\left(1-\frac{1}{2} \sin ^{2} \beta\right) \underline{k}\right] \\
T= & \frac{1}{2} \underline{\omega} \cdot \underline{H}_{0}=\frac{1}{2} m r^{2} \omega^{2}\left(1-\frac{1}{2} \sin ^{2} \beta\right)
\end{aligned}
$$

7/69 $x^{\prime}-y^{\prime}-z^{\prime}$ are principal axes of inertia so $H_{0^{\prime}}=\underline{i} I_{x^{\prime} x^{\prime}} \omega_{x}+\underline{j} I_{y^{\prime},}, \omega_{y}+\underline{k} I_{z^{\prime} z^{\prime}} \omega_{z}$
where $I_{x^{\prime} x^{\prime}}=I_{z^{\prime} z^{\prime}}=\frac{1}{4} m r^{2}, I_{y^{\prime} y^{\prime}}=\frac{1}{2} m r^{2}$

$$
\omega_{x}=\omega, \quad v_{y}=p, \omega_{z}=0
$$

so $H_{0}=\frac{1}{4} m r^{2} \omega \underline{i}+\frac{1}{2} m r^{2} p \underline{j}=\frac{1}{2} m r^{2}\left(\frac{\omega}{2} \underline{i}+p \underline{j}\right)$

$$
=\frac{1}{2} \frac{6}{32.2}\left(\frac{4}{12}\right)^{2}\left(\frac{10 \pi}{2} \underline{i}+40 \pi j\right)=\frac{0.1626(\underline{i}+8 j)}{16-f t-\sec }
$$

$T=\frac{1}{2} \underline{\omega} \cdot \underline{H}_{0}+\frac{1}{2} \overline{\underline{v}} \cdot \underline{G}=\frac{1}{2}(\omega \underline{i}+p \underline{j}) \cdot \frac{1}{2} m r^{2}\left(\frac{\omega}{2} \underline{i}+p \underline{j}\right)$
$+\frac{1}{2}(-\bar{r} \omega j) \cdot(-m \bar{r} \omega j)$ where $\vec{r}=10 \mathrm{kin}$.

$$
=\frac{1}{4} m r^{2}\left(\frac{1}{2} \omega^{2}+\beta^{2}\right)+\frac{1}{2} m \bar{r}^{2} \omega^{2}
$$

$=\frac{1}{4} \frac{6}{32.2}\left(\frac{4}{12}\right)^{2}\left(\frac{1}{2} \overline{10 \pi}^{2}+4 \overline{40}^{2}\right)+\frac{1}{2} \frac{6}{32.2}\left(\frac{10}{12} 10 \pi\right)^{2}$

$$
=84.29+63.85
$$

$$
=148.1 \mathrm{ft}-16
$$

$$
\begin{array}{l|ll}
7 / 70 & r=100 \mathrm{~mm} & \omega=4 \pi \mathrm{rad} / \mathrm{s} \\
b=200 \mathrm{~mm} & p=\frac{v_{c}}{r}=\frac{b}{r} \omega=8 \pi \mathrm{rad} / \mathrm{s}
\end{array}
$$

$n-y$
Eq. 7/11 holds for point 0 as a fixed point on axis of disk $\omega_{x}=0, \omega_{y}=-p=-8 \pi \mathrm{rad} / \mathrm{s}, \omega_{z}=\omega=4 \pi \frac{\mathrm{rad}}{\mathrm{s}}$

$$
I_{x y}=0 ; \quad I_{y y}=\frac{1}{2} m r^{2}=\frac{1}{2}(2 Y 0.1)^{2}=0.01 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$$
I_{y z}=0, I_{x z}=0, I_{z z}=\frac{1}{4} m r^{2}+m b^{2}=2\left(\frac{1}{4}{\overline{0.1}^{2}}^{2}+\overline{0.2}^{2}\right)
$$

$$
=0.085 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

So $\underline{H}_{0}=\underline{j} I_{y y} \omega_{y}+\underline{K} I_{z z} \omega_{z}=\underline{j}\left(-\frac{1}{2} m r^{2} p\right)+\underline{K}\left(\frac{1}{4} m r^{2}+m b^{2}\right) \omega$

$$
=m r^{2} w\left(-\frac{1}{2} \frac{b}{r} j+\left[\frac{1}{4}+\frac{b^{2}}{r^{2}}\right] \underline{k}\right)
$$

$$
=2(0.1)^{2} 4 \pi\left(-\frac{1}{2} 2 j+\left[\frac{1}{4}+4\right] \underline{k}\right)=0.251(-j+4.25 k)
$$

$$
T=\frac{1}{2} \omega \cdot H_{0}=\frac{1}{2}(-8 \pi \underline{j}+4 \pi k) \cdot 0.251(-j+4.25 k)
$$

$$
=3.15+6.71=9.87 \mathrm{~V}
$$

$$
\begin{aligned}
& \text {-7/72 } \omega_{x}=\omega_{y}=0, \omega_{z}=\omega \\
& H_{x}=-I_{x z} \omega_{z}, H_{y}=-I_{y z} \omega_{z} \\
& H_{z}=I_{z z} \omega_{z} \\
& I_{x z}=\bar{I}_{x z}+m d_{x} d_{z} \\
& =0+m r(-b / 2)=-\frac{m r b}{2} \\
& d I_{y z}=(r \sin \theta)(-z) \operatorname{Prd\theta } d z \\
& \left.\left.I_{y z}=-\rho_{r}{ }^{2} \frac{z^{2}}{2}\right]_{0}^{-b}(-\cos \theta)\right]_{0}^{\pi} \\
& =-P r^{2} b^{2}=-\frac{m r b}{\pi} \\
& \text { (or more simply, } \begin{aligned}
I_{y z} & =\bar{I}_{y z}+m d y d z \\
& \left.=0+m\left(\frac{2 r}{\pi}\right)\left(-\frac{b}{2}\right)=-\frac{m r b}{\pi}\right)
\end{aligned} \\
& I_{z z}=I_{z z}+m d^{2}=\left(I_{0}-m \bar{r}^{2}\right)+m\left(r^{2}+\bar{r}^{2}\right) \\
& =I_{0}+m r^{2}=2 m r^{2} \\
& \underline{H}=\operatorname{mr\omega }\left(\frac{b}{2} \underline{i}+\frac{b}{\pi} \underline{j}+2 r \underline{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{z}=\omega, \quad \dot{\omega}_{z}=0 \\
& I_{y z}=m \frac{L}{3} R-m \frac{2 L}{3} R \\
& =-m L R / 3 \\
& I_{x z}=0 \\
& Z \begin{array}{l}
I_{y^{\prime} z}=-m L R / 3 \\
I_{x^{\prime} z}=0
\end{array}
\end{aligned}
$$

$x-y$ axes: $\sum M_{x}=I_{y z} \omega_{z}^{2} \quad$ (from Eq. 7/23)

$$
\begin{aligned}
& -B_{y} L=-\frac{m L R}{3} \omega^{2}, \quad B_{y}=\frac{m R \omega^{2}}{3} \\
& \sum M_{y}=0, \quad B_{x}=0 \\
& \sum M_{x^{\prime}}=I_{y^{\prime} z} \omega_{z}^{2} \\
& A_{y} L=-\frac{m L R}{3} \omega^{2}, \quad A_{y}=-\frac{m R \omega^{2}}{3} \\
& \sum M_{y^{\prime}}=0, \quad A_{x}=0
\end{aligned}
$$

$$
x^{\prime}-y^{\prime} \text { axes: } \sum_{n} M_{x^{\prime}}=I_{y^{\prime} z}=\omega_{z}^{2}
$$

7/75 : x From Eas. 7/2.3, with $\dot{\omega}_{z}=\dot{\omega}=0$,

$$
\Sigma M_{x}=I_{y z} \omega_{z}^{2}, \Sigma M_{y}=-I_{x z} \omega_{z}^{2}, \Sigma M_{z}=0
$$

$$
I_{y z}=-m \frac{b l}{2} \sin \theta, I_{x z}=-m \frac{b l}{2} \cos \theta
$$

$$
\text { so }-B_{y} c=-m \frac{b \ell}{2} \sin \theta\left(\omega^{2}\right)
$$

$$
B_{y}=\frac{m b \& \omega^{2}}{2 c} \sin \theta
$$

$$
\phi+B_{x} c=m \frac{b l}{2} \cos \theta\left(\omega^{2}\right)
$$

$$
\underline{B}=\frac{m b l \omega^{2}}{2 c}(\underline{i} \sin \theta+\underline{j} \cos \theta), \quad B=|B|=\frac{m b l \omega^{2}}{2 c}
$$

(3) $\rho b(-b)\left(-\frac{3 b}{2}\right)=\frac{3}{2} \rho b^{3}$
(4) 0
(5) $p b(b)\left(-\frac{5}{2} b\right)=-\frac{5}{2} p b^{3}$
(6) $\rho b\left(\frac{b}{2}\right)(-3 b)=-\frac{3}{2} p b^{3}$

Total $I_{y z}=\rho b^{3}\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}-\frac{3}{2}\right)=-2 \rho b^{3}$
From Eq. 7/23 $\Sigma M_{x}=I_{y z} \omega_{z}^{2}, \dot{\omega}_{z}=0$

$$
M=M_{X}=-2 p b^{3} w^{2}
$$

$$
\begin{aligned}
& \begin{aligned}
& \sum M_{y}=-I_{y z} \dot{\omega}_{z}-I_{x z} \omega_{z}^{2}, \dot{\omega}_{z}=0 \\
& \omega_{z}=\omega=10,000\left(\frac{2 \pi}{60}\right)=1047 \frac{\mathrm{rad}}{\mathrm{sec}} \\
& \text { am } I_{x z}=-m b e=-6(0.15)(50)\left(10^{-6}\right) \\
&=-45\left(10^{-6}\right) \mathrm{kg} \cdot \mathrm{~m}^{2}
\end{aligned} \\
& \begin{aligned}
\text { Thus } B(0.20) & =45\left(10^{-6}\right)(1047) \\
& =247 \mathrm{~N}
\end{aligned}
\end{aligned}
$$

For origin of coordinates $x^{\prime}-y^{\prime}-z$ at $C, \sum M_{y^{\prime}}=0$, since $I_{x^{\prime} z}=0$
Thus $0.35 B-0.15 A=0, A=\frac{0.35}{0.15}(247)=576 \mathrm{~N}$

$$
\begin{aligned}
& \begin{array}{l}
7 / 78 \\
\sum M_{y}=-I_{x z} \omega_{z}^{2}
\end{array} \\
& I_{x z}=\int x z d m=\int_{0}^{\pi}(r+r \cos \theta)(r \sin \theta) \rho r d \theta \quad M=-M_{y} \\
& =\rho r^{3}\left[-\cos \theta-\frac{1}{4} \cos 2 \theta\right]_{0}^{\pi}=2 \rho r^{3}=\frac{2}{\pi} m r^{2} \\
& \text { so }-M=-\frac{2}{\pi} m r^{2} \omega^{2}, \quad M=\frac{2}{\pi} m r^{2} \omega^{2}
\end{aligned}
$$

7/79 $\sum M_{1 z}=I_{z}$ a where I_{z} is given by Eq. B/10

$$
\text { with } l=\cos \theta, m=0, n=\sin \theta
$$

$$
I_{x y}=I_{x z}=I_{y z}=0
$$

Thus $I_{z}=I_{x x} l^{2}+I_{y y} m^{2}+I_{z z} n^{2}+0$

$$
=I_{0} \cos ^{2} \theta+0+I \sin ^{2} \theta
$$

so

$$
\begin{aligned}
& M=\left(I_{0} \cos ^{2} \theta+I \sin ^{2} \theta\right) \alpha \\
& \alpha=\frac{M}{I_{0} \cos ^{2} \theta+I \sin ^{2} \theta}
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 80 \int M_{A_{x}}=I_{y z} w_{z}^{2} ; \sum M_{A_{y}}=-I_{x z} w_{z}^{2} \\
& I_{y z}=(\rho b) b \frac{b}{2}+(\rho b) b b+(\rho b) b \frac{3 b}{2}=3 \rho b^{3} \\
& I_{x z}=(\rho b) \frac{b}{2} b+(\rho b) b \frac{3 b}{2}=2 \rho b^{3} \\
& M_{x}=3 \rho b^{3} w^{2}, M_{y}=-2 \rho b^{3} w^{2}, M=\sqrt{M_{x}^{2}+M_{y}^{2}}=\sqrt{13} \rho b^{3} w^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 81 \quad I_{z Z}=I_{1}+I_{2}+I_{3}+I_{4} \\
& I_{1}=0, I_{2}=\frac{1}{3} \rho b^{3} \\
& I_{3}=\frac{1}{12} \rho b^{3}+\rho b\left(\frac{b^{2}}{4}+b^{2}\right)=\frac{4}{3} \rho b^{3} \\
& I_{4}=\rho b\left(b^{2}+b^{2}\right)=2 \rho b^{3} \\
& T_{\text {hus }} I_{z Z}=\rho b^{3}\left(\frac{1}{3}+\frac{4}{3}+2\right)=\frac{11}{3} \rho b^{3} .
\end{aligned}
$$

Eq: $7 / 23$ with $\omega=\omega_{z}=0, \dot{\omega}=\dot{\omega}_{z}$

$$
\Sigma M_{z}=I_{z z} c \dot{u}_{z}: M_{0}=\frac{11}{3} \rho b^{3} \dot{w}_{z}, \quad \dot{w}_{z}=\frac{3 M_{0}}{11 \rho b^{3}}
$$

From sol. to Prob. $7 / 80 I_{y z}=3 p b^{3}, I_{x z}=2 p b^{3}$

$$
\begin{aligned}
& \Sigma M_{x}=-I_{x z} \dot{\omega}_{z}: M_{x}=-2 \rho b^{3} \frac{3 M_{0}}{11 \rho b^{3}}=-\frac{6}{11} M_{0} \\
& \Sigma M_{y}=-I_{y z} \dot{\omega}_{z}: M_{y}=-3 \rho b^{3} \frac{3 M_{0}}{11 \rho b^{3}}=-\frac{9}{11} M_{0} \\
& M=\sqrt{M_{x}^{2}+M_{y}^{2}}=\frac{M_{0}}{11} \sqrt{\sigma^{2}+9^{2}}=\frac{3 \sqrt{13}}{11} M_{0}
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 83 \\
& \omega_{x}=\omega_{y}=0, \\
& =125.7 \mathrm{rad} / \mathrm{sec} \\
& \omega_{z}=\frac{1200 \times 2 \pi}{60} \\
& =1200 \mathrm{rev} / \mathrm{min}
\end{aligned}
$$

From Eqs. 7/23, about G,

$$
\begin{aligned}
& \Sigma M_{x}=I_{y z} \omega_{z}^{2}, \Sigma M_{y}=-I_{x z} \omega_{z}^{2}, \\
& \Sigma M_{z}=0
\end{aligned}
$$

$$
\begin{aligned}
I_{y z}=0, I_{x z} & =\{0+m(2 b)(\bar{r})\}+\{0+m(-2 b)(-\bar{r})\}=4 m b \bar{r} \\
& =4(1.20)(0.080)(0.0424)=0.01630 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

$$
\sum F_{x}=0 \text { so } A_{x}=B_{x}
$$

$$
\sum M_{y}=-A_{x} b-B_{x} b=-4 m b \bar{r} \omega_{z}^{2}, A_{x}=B_{x}=2 m b \bar{r} \omega_{z}^{2} / b
$$

$$
A_{x}=B_{x}=\frac{1}{2}(0.01630)(125.7)^{2} / 0.080
$$

$$
=1608 \mathrm{~N}
$$

$$
\begin{aligned}
\sum M_{x}=0, A_{y}=B_{y}= & 0 \\
& F_{-A}=1608 i N, \quad F_{B}=-1608 i \mathrm{~N}
\end{aligned}
$$

$7 / 84$ With $\omega_{x}=\omega_{y}=\omega_{z}=\dot{\omega}_{x}=\dot{\omega}_{y}=0, \dot{\omega}_{z}=900 \mathrm{rad} / \mathrm{s}^{2}$,
Eqs. 7/23 become

$$
\sum M_{x}=-I_{x z} \alpha, \sum M_{y}=-I_{y z} \alpha, \sum M_{z}=I_{z z} \alpha
$$

From the solution to Prob. $7 / 83 \quad I_{y z}=0, I_{x z}=0.01630 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ Also $I_{z z}=\frac{1}{2}(2 \mathrm{~m}) r^{2}=1.20(0.100)^{2}=0.012 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
where $m=$ mass of semicircular disk

$$
\begin{aligned}
\Sigma F_{y} & =0 \text { So } A_{y}=B_{y} \\
\Sigma M_{x} & =-0.080 A_{y}-0.080 B_{y} \\
& =-0.01630(900) \\
A_{y} & =B_{y}=91.7 \mathrm{~N} \\
\text { so } \underline{F}_{A} & =-91.7 \underline{j}, \underline{F}_{B}=91.7 \underline{\mathrm{~N}}
\end{aligned}
$$

$M=\sum M_{z}=0.012(900)=10.8 \mathrm{~N} \cdot \mathrm{~m}$

$b=80 \mathrm{~mm}$
$m=1.20 \mathrm{~kg}$
$\alpha=\dot{\omega}_{z}=900 \mathrm{rad} / \mathrm{s}^{2}$

$$
\begin{aligned}
& 7 / 85 \mid \omega_{x}=\omega_{y}=0, \omega_{z}=\omega \\
& \dot{\omega}_{x}=\dot{\omega}_{y}=\dot{\omega}_{z}=0, I_{y z}=0
\end{aligned}
$$

so Eq. $7 / 23$ becomes

$$
\Sigma M_{y}=-I_{x z} \omega_{z}^{2}
$$

$$
\begin{aligned}
d I_{x z} & =d m(s \cos \theta)(-s \sin \theta) \\
I_{x z} & =-\sin \theta \cos \theta \rho \int_{0}^{L} s^{2} d s=-\rho \frac{L^{3}}{6} \sin 2 \theta
\end{aligned}
$$

so tor complete bar $I_{x z}=-\frac{\rho}{b} \sin 2 \theta\left(b^{3}+c^{3}\right)$

$$
\begin{gathered}
\text { Thus } \rho g b \frac{b}{2} \cos \theta-\rho g c \frac{c}{2} \cos \theta=\frac{\rho}{3} w^{2}\left(b^{3}+c^{3}\right) \sin \theta \cos \theta \\
\frac{9}{2}\left(b^{2}-c^{2}\right) c d s \theta=\frac{1}{3}\left(b^{3}+c^{3}\right) \omega^{2} \sin \theta \cos \theta \\
\sin \theta=\frac{3 g}{2 \omega^{2}} \frac{b^{2}-c^{2}}{b^{3}+c^{3}}, \quad \theta=\sin ^{-1} \frac{b^{2}-c^{2}}{b^{3}+c^{3}} \frac{3 g}{2 \omega^{2}}
\end{gathered}
$$

provided that $\omega^{2} \geqslant \frac{3 g}{2} \frac{b^{2}-c^{2}}{b^{3}+c^{3}}$; otherwise $\cos \theta=0, \theta=90^{\circ}$

$$
\begin{aligned}
& \frac{7 / 86}{I_{y z^{\prime}}=I_{y^{\prime} z^{\prime}}}+m a_{y} d_{z} \\
& I_{y^{\prime} z^{\prime}}=\int l \sin \theta \ell \cos \theta d m \\
& =\sin \theta \cos \theta \int l^{2} d m \\
& =\sin \theta \cos \theta I_{x} x^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { dl } \\
& =\frac{1}{2} \sin 2 \theta \frac{1}{12} m b^{2}=\frac{1}{24} m b^{2} \sin 2 \theta \\
& I_{y z}=\frac{1}{24} m b^{2} \sin 2 \theta+m\left(-\frac{b}{2}-\frac{b}{2} \sin \theta\right)\left(-\frac{b}{2} \cos \theta\right) \\
& =\frac{m b^{2}}{4}\left(\frac{2}{3} \sin 2 \theta+\cos \theta\right) \\
& \text { Eq. 7/23 } \quad \sum M_{x}=0+I_{y z} \omega_{z}^{2} \\
& m g\left(\frac{b}{2}+\frac{b}{2} \sin \theta\right)-m g \frac{b}{2}=\frac{m b^{2}}{4}\left(\frac{2}{3} \sin 2 \theta+\cos \theta\right) \\
& g \tan \theta=b\left(\frac{2}{3} \sin \theta+\frac{1}{2}\right) \omega^{2} \\
& \omega=\sqrt{\frac{1}{b} \frac{6 g \tan \theta}{4 \sin \theta+3}}
\end{aligned}
$$

7/87 $\Sigma M_{y}=-I_{x z} \omega_{z}^{2} ; I_{x z}=\int\left(x^{\prime} \cos \alpha\right)\left(x^{\prime} \sin \alpha\right) d m$

But moment on shaft is

$$
\underline{M}=\left(\frac{1}{8} m r^{2} \omega^{2} \sin 2 \alpha\right) \underline{j}
$$

7/88 For parallel-plane motion with $\dot{\omega}=0 \underset{i}{\dot{\xi}} I_{x Z}=0$, Ens. 7/23 give

$$
\begin{gathered}
\Sigma M_{x}=I_{y z} \omega_{z}^{2} \\
I_{y z}=\int y z d m=\int_{0}^{b \cos \beta} z^{2} \tan \beta P d z
\end{gathered}
$$

where $P=$ mass per unit of z-dimension

$$
I_{y z}=\left.\varphi \tan \beta \frac{z^{3}}{3}\right|_{0} ^{b \cos \beta}=\frac{1}{6} m b^{2} \sin 2 \beta
$$

So $M_{x}=\frac{1}{6} m b^{2} \omega^{2} \sin 2 \beta$
(Moment due to weight is neglected.)

7/89 For parallel-plane motion with $\omega_{z}=0$ and $I_{x z}=0, \dot{\omega}_{z}=\alpha, \quad I_{y z}=\frac{1}{6} m b^{2} \sin 2 \beta$ (from the solution to Prob. 7/88), Eggs. 7/23 give

$$
\begin{aligned}
& \sum M_{y}=-I_{y z} \dot{\omega}_{z}, \quad M_{y}=-\frac{1}{6} m b^{2} \alpha \sin 2 \beta \\
& \sum M_{z}=I_{z z} \dot{\omega}_{z} \\
& I_{G}=\frac{b(b \sin \beta)}{12}\left(b^{2} \sin ^{2} \beta+b^{2}\right) P \quad(\text { from Table D3 })
\end{aligned}
$$

($P=$ mass per unit of area projected onto $x-y$ plane; $\left.m=\rho b^{2} \cos \beta\right)$

$$
\begin{aligned}
I_{0} & =I_{z z}=\frac{b^{2} \sin \beta}{12}\left(b^{2} \sin ^{2} \beta+b^{2}\right) p+b^{2} \sin \beta\left(\frac{b}{2} \sin \beta\right)^{2} p \\
& =\frac{1}{12} m b^{2}\left(1+4 \sin ^{2} \beta\right)
\end{aligned}
$$

So $M_{z}=\frac{1}{12} m b^{2} \alpha\left(1+4 \sin ^{2} \beta\right)$
$7 / 90$ From $E q . ~ T / 23$ with $\omega_{z}=\omega, \dot{\omega}_{z}=0$,
$\Sigma M_{x}=I_{y z} \omega^{2}$
$I_{y z}=\int y z d m=\int\left(y_{0} \sin \beta\right)\left(y_{0} \cos \beta\right) d m$
$=\sin \beta \cos \beta \int y_{0}^{2} d m$
$=\frac{1}{2} \sin 2 \beta I_{x x}$
$=\frac{1}{2} \sin 2 \beta\left(\frac{1}{4} m R^{2}+m R^{2}\right)$
$=\frac{5}{8} m R^{2} \sin 2 \beta$
So $m g R \sin \beta=\left(\frac{5}{8} m R^{2} \sin 2 \beta\right) \omega^{2}$,

$$
\sin \beta\left(g-\frac{5}{8} R \omega^{2} \times 2 \cos \beta\right)=0, \beta=\cos ^{-1} \frac{4 g}{5 R \omega^{2}} i \omega^{2} \geqslant \frac{4 g}{5 R}
$$

otherwise $\beta=0$

$$
\begin{aligned}
& \sum F_{x}=m \bar{a}_{x}: \quad P=0 \\
& \sum M_{y}=-I_{x z} \omega_{z}^{2} \\
& I_{x z}=\int x z d m=\int_{-l / 4}^{l / 4} x \sqrt{3}\left(\frac{l}{4}+x\right) \rho d x
\end{aligned}
$$

Where $P=$ mass $/(x-$ comp. of length $)$

So $M_{y}-m g \frac{l}{4}=-\frac{\sqrt{3}}{48} m l^{2} \omega^{2}$
\& for $M_{y}=0, \quad \omega=2 \sqrt{\frac{\sqrt{3} g}{l}}$

$$
\begin{aligned}
\frac{7 / 92}{z ;} \omega_{x}=\omega_{y} & =0, \omega_{z}=\omega, \dot{\omega}_{z}=0, I_{x z}=0 \\
I_{y z} & =\int y z d m=\int_{0}^{\pi}(-r \sin \theta)(2 r-r \cos \theta) \operatorname{Prd\theta } \\
& =-\operatorname{\rho r}^{3} \int_{0}^{\pi}(2 \sin \theta-\sin \theta \cos \theta) d \theta \\
& =\left.\operatorname{pr}^{3}\left[+2 \cos \theta-\frac{1}{4} \cos 2 \theta\right]\right|_{0} ^{\pi} \\
& =-4 \rho r^{3}=-\frac{4 m r^{2}}{\pi} \\
m=\frac{\rho \pi r}{a r} & =2 r / \pi
\end{aligned}
$$

Eqs. 7/23:

$$
\begin{gathered}
x: m g\left(\frac{2 r}{\pi}\right)-M_{x}=-\frac{4 m r^{2}}{\pi} \omega^{2} \\
M_{x}=m g\left(\frac{2 r}{\pi}\right)+\frac{4 m r^{2}}{\pi} \omega^{2} \\
y: M_{y}=0 ; \quad z: M_{z}=0 \\
\text { So } M=\frac{2 m r}{\pi}\left(g+2 r \omega^{2}\right)
\end{gathered}
$$

-7/93

$$
I_{x^{\prime} z^{\prime}}=\int x_{c}^{\prime} z_{c}^{\prime} d m
$$

$$
z_{2} z^{\prime} \left\lvert\, \frac{\frac{2 b}{3}}{\left.\sqrt{\frac{b}{3}} \right\rvert\, a!}=\int\left(-\frac{h}{2 b} z^{\prime}\right)\left(z^{\prime}\right) f\left(x^{\prime} d z^{\prime}\right)\right.
$$

$$
x^{\prime \prime} \quad x^{\prime}=-\frac{h}{b} z^{\prime},|2 h| 3 \left\lvert\, x\left(-\frac{h}{2 b} z^{\prime}\right)\left(z^{\prime}\right) p\left(+\frac{h}{b} z^{\prime} d z^{\prime}\right)\right.
$$

$I_{x^{\prime} z^{\prime}}=-\frac{h^{2} \rho}{2 b^{2}} \int_{0}^{-b} z^{\prime} 3 d z^{\prime}=-\frac{1}{4} m h b$, since $m=\frac{p h b}{2}$
$\bar{I}_{x^{\prime} z^{\prime}}=I_{x^{\prime} z^{\prime}}-m d_{x^{\prime}} d_{y^{\prime}}=-\frac{1}{4} m h b-m\left(+\frac{h}{3}\right)\left(-\frac{2 b}{3}\right)$
$=-\frac{1}{36} m h b$. Similarly, $I_{x z}=\frac{1}{12} m h b+\frac{1}{3} m h a$

Simplifying, $\quad A_{y}=A=\underline{m g} / 6$
$-7 / 94$

$$
\begin{aligned}
& U=\Delta T+\Delta V_{e}+\Delta V_{g} \\
& O=\frac{1}{2} I_{z z} \omega_{z}^{2}-m g(h / 3)
\end{aligned}
$$

From Prob. 7/93, $I_{z z}=\frac{1}{6} \mathrm{mh}^{2}$, so $\omega_{z}=2 \sqrt{\frac{9}{h}}$

$$
-m h\left(\frac{b}{12}+\frac{a}{3}\right) 4 \frac{9}{h}
$$

$$
A_{y}=\frac{m g}{3}\left[\frac{7 a+2 b}{2 a+b}\right]
$$

$$
\begin{aligned}
& \sum M_{y}=0: \quad A_{x}(2 a+b)=0, \quad A_{x}=0 \\
& A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\frac{m g}{3}\left[\frac{7 a+2 b}{2 a+b}\right]
\end{aligned}
$$

7/95 $\underline{M}=I \underline{\Omega} \times \underline{p}:-M \underline{i}=I \underline{\Omega} \times \underline{\underline{j}}$
$\underline{\Omega}$ is in $+\underline{k}$ direction
So precession is CCW when viewed from obove.

(Side view)

(Overhead view)
M is the moment exerted on the handle by the student; \underline{H} is the wheel angular momentum. From $\underline{M}=\dot{H} \cong \underline{\tilde{=}} \frac{\Delta H}{\Delta t}$, we see That $\Delta \underline{H}$ is in the same direction as \underline{M}. H^{\prime} is the new angular momentum. The student will sense a tendency of the wheel to rotate to her right.

Because of precession Ω, gyroscopic moment
 on rotor points to the rear and reacting moment on bus is forward. Result is that the force urider the risht-hamed tires is increased.

$$
\begin{aligned}
& 7 / 99 \quad Z \\
& \Delta R \quad 50(9.81) \mathrm{N} \quad \Omega=\frac{48 \times 2 \pi}{60}=5.03 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& R=50(9.81)+\Delta R \\
& M=I \Omega p=3.06(5.03)(8.62) \\
& =132.6 \mathrm{~N} \cdot \mathrm{~m} \\
& M=\Delta R(6), \Delta R=\frac{132.6}{0.600}=221 \mathrm{~N} \\
& \text { Thus } R=50(9.81)+221=712 \mathrm{~N}
\end{aligned}
$$

$7 / 100$

$$
\begin{aligned}
& M=I \Omega P \\
& M=M_{1}=m \kappa^{2} \Omega \frac{v}{r}
\end{aligned}
$$

7/101

Pilot would apply left rudder to counter the clockwise (viewed from above) reaction to the gyroscopic moment

$$
\begin{aligned}
M=I \Omega_{p} & =210(0.220)^{2}\left[\frac{1200(1000)}{3600} / 3800\right] \frac{18000 \times 2 \pi}{60} \\
& =(10.16)(0.0877)(1885) \\
& =1681 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
p=20000 \frac{2 \pi}{60}=2094 \mathrm{rad} / \mathrm{s}
$$

$$
\Omega=2 \mathrm{rad} / \mathrm{s}
$$

$$
I=3.5(0.079)^{2}+2.4(0.071)^{2}
$$

$$
=0.0339 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$$
M=I \Omega P \quad\left(=M_{A}+M_{B}\right)
$$

$$
0.15 C=0.0339(2)(2094)
$$

$$
C=D=948 \mathrm{~N}
$$

7/103

$$
\begin{aligned}
& \Omega=\frac{10}{180} \pi=0.17 \\
& 2 \pi=52.4 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

$$
p=\frac{500}{60} 2 \pi=52.4 \mathrm{rad} / \mathrm{sec}
$$

$$
\begin{array}{rl}
I & =\frac{140}{32.2} 10^{2}=435 \\
M & 16-f t-\text { sec }^{2} \\
M & =4 \Omega p \\
& =435(0.1745) 52.4 \\
& =3970 \quad 16-f t
\end{array}
$$

M

conclusion: CCW deflection

M needed on structure of ship to counteract roll to port (left). Reaction on gyro is opposite to M on ship. Proper directions of $\underline{p}, \underline{\Omega}$, A shown - requiring rotation (b) of motor.

$$
M=I \Omega p=80(1.45)^{2} 960 \frac{2 \pi}{60} 0.320=5410 \mathrm{kN} \cdot \mathrm{~m}
$$

(a)
(b)

Cose (a) $\Sigma M_{x}=0$: so no precession

$$
M_{A}=4(9.81) 0.320=12.56 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\operatorname{case}(b) \Sigma M_{x}=m g b=4(9.81) 0.4=15.70 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\Sigma M_{x}^{x}=I_{z z} \Omega_{p: 1} 15.70=4(0.12)^{2} \Omega \frac{3600(2 \pi)}{60}
$$

$$
\underbrace{R=m g}_{0!A_{A}}
$$

$$
\Omega=0.723 \mathrm{rad} / \mathrm{s}
$$

$$
\sum M_{A_{x}}=0: \quad M_{A}=m g(0.08)
$$

0.08 m mg

$$
M_{A}=4(9.81)(0.08)=3.14 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\begin{aligned}
& \text { 7/106 } \\
& m g=4(9.81) \\
& =39.2 \mathrm{~N} \\
& \Omega=\underset{\text { const }}{2 \mathrm{rad} / \mathrm{s}} \\
& { }^{y} \\
& M_{x}{ }^{\prime}{ }^{A} \\
& 320 \mathrm{~mm} \\
& M_{m g} \prod_{x} \\
& \text { (img }\left.\right|_{m g} \\
& \begin{array}{l}
\text { For rotor } \\
M_{x}=I_{z z} \Omega_{p}=4(0.12)^{2} 2 \frac{3600(2 \pi)}{60}=49.4 \mathrm{~N} \cdot \mathrm{~m} \\
\text { so } M_{A}=M_{x}-M_{s}=43.4-39.2(0.320)
\end{array} \\
& =30.9 \mathrm{~N} \cdot \mathrm{~m} \\
& \sum M_{y}=I_{y y} \dot{\Omega} \text { but } \Omega=\text { const. so } \dot{\Omega}=0 \text { a } M_{y}=M_{0}=0
\end{aligned}
$$

7/107 From Eq. 7/30 with θ small so that $\cos \theta \approx 1$, the precessional rate is

$$
\dot{\psi}=\frac{I p^{\prime}}{I_{0}-I}=\frac{p}{\left(I_{0} / I\right)-1}=\frac{3}{\frac{1}{2}-1}=-6 \mathrm{rev} / \mathrm{min}
$$

Where the minus sign indicates retrograde precession

$7 / 109 \mid$ Let $m=$ mass of each cone
From Table D/4

$$
\begin{aligned}
I_{0}=I_{x} & =2\left\{\frac{3}{20} m r^{2}+\frac{1}{10} m h^{2}\right\} \\
& =\frac{m r^{2}}{10}\left(3+2\left[\frac{h}{r}\right]^{2}\right) \\
I=I_{z} & =2 \frac{3}{10} m r^{2}
\end{aligned}
$$

No wobble or precession if $I_{0}=I$
so $\left(3+2 \frac{h^{2}}{r^{2}}\right)=6, h / r=\sqrt{3 / 2}$

7/111

$$
\underline{M}_{0}=m g \frac{3}{4} h \sin \theta(-\underline{i})
$$

so change in angular -momentum vector is in $-x$ direction and precession is designated by $\Omega \underline{k}$. Eq. 7/25 gives the perecession, so the period is

$$
\tau=2 \pi / \Omega
$$

$\tau=2 \pi /\left(\frac{g \bar{r}}{k^{2} p}\right)$. For the solid cone, $\bar{r}=\frac{3}{4} h$
\& from Table $D / 4, I=\frac{3}{10} m r^{2}$ so $k^{2}=\frac{3}{10} r^{2}$
Thus

$$
\tau=\frac{2 \pi}{\frac{3 g h / 4}{\frac{3}{10} r^{2} p}}=\frac{4 \pi r^{2} p}{5 g h} \text { independent of } \theta \text { for large } p \text {. }
$$

7/112 For the given direction of $\operatorname{spin} p$, the friction force acting on the cone at P will be in the $+x$-direction. This force produces a moment Mabout G, a small component of which, M_{1}, is along the spin axis and tends to reduce the spin. The other component M_{2} causes a change in the principal angu-
 lar momentum I_{p} in the direction of M_{2}, thus causing θ to clecrease.

7/113 Assume right turn

Rear views

$$
\begin{aligned}
& m \bar{a}=m v^{2} / R ; \sum M_{0}=m \bar{a} h \text { so } M=m v^{2} h / R \\
& M=I \Omega p ; \frac{m v^{2} h}{R}=m_{0} k^{2} \frac{v}{R} p
\end{aligned}
$$

$$
p=\frac{m}{m_{0}} \frac{v h}{k^{2}}
$$

opposite direction to rotation of wheels

7/114

Direct precession if $I_{0} / T>1 ; \frac{1}{2}+\frac{1}{12}\left(\frac{l}{r}\right)^{2}>1, \frac{l}{r}>\sqrt{6}$
Retrograde " if $I_{0} / T<1 ; \frac{l}{r}<\sqrt{6}$

7/116) From Eq, 7/30 the frequency of precession is $f=\frac{\dot{\psi}}{2 \pi}=\frac{1}{2 \pi}\left|\frac{I p}{\left(I_{0}-I\right) \cos \theta}\right|$

$$
\begin{aligned}
& \text { with } \cos \theta \approx 1 ; \frac{p}{2 \pi}=\frac{300}{60}=5 \mathrm{~Hz} \text {; } \\
& \text { \& with } \frac{I}{\Sigma_{0}-I}=\frac{m r^{2}}{\frac{1}{2} m r^{2}-m r^{2}}=-2, \quad \begin{array}{l}
\text { (retrograde } \\
\text { precession) }
\end{array} \\
& f=|5(-2)|=10 \mathrm{~Hz}
\end{aligned}
$$

7/117 From Eq. 7/30,

$$
\dot{\psi}=\frac{I_{p}}{\left(I_{0}-I\right) \cos \theta}=\frac{p}{\left[\left(I_{0} / I\right)-1\right] \cos \theta}
$$

where $I_{0} / I=\frac{\frac{1}{4} m r^{2}}{\frac{1}{2} m r^{2}}=\frac{1}{2}, p=\frac{300(2 \pi)}{60}=10 \pi \mathrm{rad} / \mathrm{s}$

$$
\tau=2 \pi /|\dot{\psi}| \quad \cos \theta=\cos 5^{\circ}=0.9962
$$

$$
T=2 \pi \frac{\mid(1 / 2-1 \mid 0.9962}{10 \pi}=0.0996 \mathrm{~s}
$$

Precession is retrograde since $I>I_{0}$

$$
\begin{aligned}
& 7 / 118 \text { Case (a) } \quad p=\frac{120 \times 2 \pi}{60}=\frac{4 \pi \mathrm{rad} / \mathrm{s}}{\theta} \\
& \\
& \quad \operatorname{Case}(6) \quad p=4 \pi, \theta=10^{\circ}, T_{0} / I=1 / 0.3
\end{aligned}
$$ From Eq. 7/30, the precessional rate is

$$
\begin{aligned}
\dot{\psi} & =\frac{p}{\left(\frac{I_{0}}{I}-1\right) \cos \theta}=\frac{4 \pi}{\left(\frac{1}{0.3}-1\right) \cos 10^{\circ}} \\
& =5.47 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

From Eg. 7/29,

$$
\tan \beta=\frac{I}{T_{0}} \tan \theta=0.3 \tan 10^{\circ}, \beta=3.03^{\circ}
$$

$$
\text { Case (c) } \begin{aligned}
\theta & =\beta=90^{\circ}, p=0 \\
\dot{\psi} & =4 \pi \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$7 / 119 \mathrm{I}=$ moment of inertia about its
longitudinal ax is $=\frac{1}{12} m\left(a^{2}+a^{2}\right), a=4^{\prime \prime}$
$I_{0}=$ moment of inertia about transverse

$$
\begin{aligned}
& I_{0} / I=\frac{1}{12} m\left(a^{2}+4 a^{2}\right) / \frac{1}{6} m a^{2}=5 / 2 \\
& \text { Eq. } 7 / 30 \text { \& } 4=\frac{p}{\left(\frac{I_{0}}{I}-1\right) \cos \theta}=\frac{200}{\left(\frac{5}{2}-1\right) \cos 10^{\circ}}=135.4 \mathrm{rev} / \mathrm{min} \\
& \text { period of wobble } \tau=\frac{60}{135.4}-0.443 \mathrm{sec}
\end{aligned}
$$

$7 / 120$ From $E_{9} \cdot 7 / 19, M_{x}=\dot{H}_{x}-H_{y} \Omega_{z}-H_{z} \Omega_{y}$
Angular velocities of axes are

$$
\Omega_{x}=\omega_{x}=\omega_{0}, \Omega_{y}=\Omega_{z}=0 \text { so } M_{x}=\dot{H}_{x}
$$

But from $E 9$. 7/12

$$
H_{x}=I_{x x} \omega_{x}-I_{x y} \omega_{y}-I_{x z} \omega_{z}
$$

where $\omega_{x}=\omega_{0}, \omega_{y}=0, \omega_{z}=\dot{\phi}=p$

$$
\begin{aligned}
& I_{x x}=\frac{1}{12} m(l \sin \phi)^{2}=\frac{1}{12} m l^{2} \sin ^{2} \phi \\
& I_{x y}=\int x y d m=\frac{1}{24} m l^{2} \sin 2 \phi \\
& I_{x z}=0
\end{aligned}
$$

Thus

$$
\begin{aligned}
M & =M_{x}=\frac{d}{d t}\left(\frac{1}{12} m l^{2} \sin ^{2} \phi\right) \omega_{x}=\frac{1}{6} m l^{2} \phi \omega_{x} \sin \phi \cos \phi \\
& =\frac{1}{12} m l^{2} p \omega_{0} \sin 2 \phi
\end{aligned}
$$

Use notation of Fig. 7/20 \& Eq. 7/20

$$
\begin{aligned}
M= & \dot{\psi} \sin \theta\left[I(\dot{\psi} \cos \theta+p)-I_{0} \dot{\psi} \cos \theta\right] \\
= & 41.9 \sin 70^{\circ}\left[0.0361\left(41.9 \cos 70^{\circ}+130.9\right)\right. \\
& \left.\quad-\frac{0.0361}{2}(41.9) \cos 70^{\circ}\right]=196.3 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\underline{M}=-196.3 \underline{\mathrm{~N}} \cdot \mathrm{~m}
$$

Also for disk $\sum F_{y}=m \bar{a}_{y}:-F=-5\left(0.3 \cos 70^{\circ}\right)(41.9)^{2}$,

$$
F=2470 \mathrm{~N}
$$

$$
\text { shaft: } \Sigma M_{0} \approx 0: M_{0}+196.3-2470\left(0.1+0.3 \sin 20^{\circ}\right)
$$

$$
-5(9.81)\left(0.3 \cos 20^{\circ}\right)=0
$$

$$
M_{0}=319 \mathrm{~N} \cdot \mathrm{~m}
$$

7/122
for whole propeller.

$$
\text { Let } \rho=f(s) \text { be mass per unit length }
$$

$$
\text { so } d m=p d s=f(s) d s
$$

Thus for the three blades

$$
\begin{aligned}
& I_{x x}=0+2\left(\frac{3}{4} I\right)=\frac{3}{2} I \\
& I_{y y}=I+2\left(\frac{1}{4} I\right)=\frac{3}{2} I \\
& I_{z z}=3 I
\end{aligned}
$$

$$
\omega_{x}=\Omega \sin \varphi, \dot{\omega}_{x}=\Omega p \cos \varphi
$$

Blade I: $I_{x x}=0, I_{y y}=\int f(s) d s \times s^{2}=I$
Blades 2\&3: $I_{x x}=\int f(s) d s\left(s \cos 30^{\circ}\right)^{2}=\frac{3}{4} I$

$$
I_{y y}=\int f(s) d s\left(s \sin 30^{\circ}\right)^{2}=\frac{i}{4} I
$$

$$
\hat{\omega_{y}}=\Omega \cos \varphi, \dot{\omega}_{y}=-\Omega p \sin \varphi
$$

$$
\omega_{z}=\dot{\varphi}=p, \dot{\omega}_{z}=0
$$

From Eq. $7 / 21 M_{x}=I_{x x} \dot{\omega}_{x}-\left(I_{y y}-I_{z z}\right) \omega_{y} \omega_{z}$

$$
\begin{aligned}
& =\frac{3}{2} I \Omega p \cos \varphi-\left(\frac{3}{2} I-3 I\right) \Omega p \cos \varphi=3 I \Omega p \cos \varphi \\
M_{y} & =I_{y y} \dot{\omega}_{y}-\left(I_{z Z}-I_{x x}\right) \omega_{z} \omega_{x} \\
& =\frac{3}{2} I(-\Omega p \sin \theta)-\left(3 I-\frac{3}{2} I\right) \Omega p \sin \varphi=-3 I \Omega p \sin \varphi
\end{aligned}
$$

acting on hub; reaction on shaft has opposite signs.

The magnitucle of M is $M=\sqrt{M_{x}^{2}+M_{y}^{2}}=3 I \Omega p$

$\dot{\psi}=\ddot{\psi}=0$; From moment Eggs. 7/26
$x: m g l \sin \theta=m\left(\frac{r^{2}}{4}+l^{2}\right) \ddot{\theta}$ where $I_{0}=I_{x x}=\frac{1}{4} m r^{2}+m l^{2}$
$y:\left(A_{z}-B_{z}\right) b=-\frac{1}{2} m r^{2} \dot{\theta} p \ldots . .(6)$
where $I=\frac{1}{2} m r^{2}$
保
$z: 0=I \dot{p}$ where $\omega_{z}=0+p \ldots(c)$
From (a) with $\dot{\theta} d \dot{\theta}=\ddot{\theta} d \theta, \iint_{0}^{\pi / 2} \sin \theta d \theta=\left(\frac{r^{2}}{4}+l^{2}\right) \int_{0}^{\dot{\theta}} \dot{\dot{\theta}} d \dot{\theta}$ which gives $\dot{\theta}^{2}=8 g l /\left(r^{2}+4 l^{2}\right)$
From (b) $-A_{Z}+B_{z}=\frac{1}{2} m \frac{r^{2}}{b} \dot{\theta}_{p}$ for $\theta=\pi / 2$
Also for $\theta=\pi / 2, \sum F_{z}=m \bar{a}_{z} ;-A_{z}-B_{z}=m b \dot{\theta}^{2}$
Solve (d) $\$$ (e) $\&$ get

$$
\left.\begin{array}{l}
A_{z}=-\frac{m \dot{\theta}}{2}\left(\frac{r^{2} p}{2 b}+l \dot{\theta}\right) \\
B_{z}=\frac{m \dot{\theta}}{2}\left(\frac{r^{2} p}{2 b}-l \dot{\theta}\right)
\end{array}\right\} \text { where } \dot{\theta}=2 \sqrt{\frac{2 g l}{r^{2}+4 l^{2}}}
$$

$-7 / 124 \quad \dot{\psi}=\frac{I_{p}}{\left(I_{0}-I\right) \cos \theta}$
(a) No precession if $I_{0}=I$

From Table D4

$$
\begin{gathered}
I=I_{z z}=2\left(\frac{3}{10} m r^{2}\right)=\frac{3}{5} m r^{2} \\
I_{0}=I_{x x}=2\left(\frac{3}{20} m r^{2}+\frac{3}{5} m h^{2}\right)=\frac{3}{10} m r^{2}+\frac{6}{5} m h^{2} \\
I=I_{0}: \frac{3}{5} m r^{2}=\frac{3}{10} m r^{2}+\frac{6}{5} m h^{2}, . \frac{h=\frac{r}{2}}{}
\end{gathered}
$$

(b) For $h<\frac{r}{2}, I_{0}<I$; retrograde precession
Body
(c) $h=r$,

$$
\begin{aligned}
& \frac{I}{I_{0}-I}=\frac{3 / 5}{3 / 2-3 / 5}=\frac{2}{3} \\
& P=200\left(\frac{2 \pi}{60}\right)=20.9 \frac{\mathrm{rad}}{\mathrm{~s}} \\
& \theta
\end{aligned}=\cos ^{-1}\left[\frac{I}{I_{0}-I} \frac{p}{\dot{\psi}}\right] \quad \begin{aligned}
& =\cos ^{-1}\left[\frac{2}{3} \frac{20.9}{18}\right] \\
& \\
& =39.1^{\circ}
\end{aligned}
$$

- $7 / 125 \omega=\frac{2 \pi}{\tau}=$ constant precessional rate about y-axis
$\square \omega M_{x}=$ gyroscopic moment on

z-wheel $=I \Omega_{z} \omega$
$-M_{x}=$ moment to accelerate

$$
\begin{aligned}
& x \text {-wheel }=I \dot{\Omega}_{x} \\
& \text { so } I \Omega_{z} \omega=-I \dot{\Omega}_{x}, \dot{\Omega}_{x}+\omega \Omega_{z}=0
\end{aligned}
$$

$M_{z}=$ gyroscopic moment on
x-wheel $=-I \Omega_{x} \omega$
when $t=0$,

$$
\Omega_{z}=\Omega_{0}, \dot{\Omega}_{z}=0
$$

$$
\Omega_{x}^{\tau}=0
$$

$-M_{z}=$ moment to accelerate

$$
z \text {-wheel }=+\sqrt{1} \dot{\Lambda}_{z} \text {. }
$$

so $I \Omega_{x} \omega=+i \dot{\Omega}_{z}, . . \dot{\Omega}_{z}-\omega \Omega_{x}=0_{0}^{\prime(b)}$
Combine (a) (b) $\&$ get $\ddot{\Omega}_{z}+\omega^{2} \Omega_{z}=0 \$ \ddot{\Omega}_{x}+\ddot{\omega}^{2} \Omega_{x}=0$
For given conditions at $t=0,\left\{\begin{array}{l}\Omega_{x}=-\Omega_{0} \sin \omega t \\ \Omega_{z}=\Omega_{0} \cos \omega t\end{array}\right.$ Thus motor torques
on shafts are

-7/126 with $\omega_{x}=\Omega_{x}=-\omega_{0} \cos \gamma \sin \beta$

$$
\begin{aligned}
\omega_{y}=\Omega_{y}=\omega_{0} \sin \gamma+\dot{\beta} \\
\omega_{z}=\Omega_{z}+\beta=\omega_{0} \cos \gamma \cos \beta+p \\
H_{x}=I_{x x} \omega_{x}=-I_{0} \omega_{0} \cos \gamma \sin \beta \\
H_{y}=I_{y y} \omega_{y}=I_{0}\left(\omega_{0} \sin \gamma+\dot{\beta}\right) \\
H_{z}=I_{z z} \omega_{z}=I\left(\omega_{0} \cos \gamma \cos \beta+\beta\right)
\end{aligned}
$$

second of Eq. $7 / 19$ becomes with $M_{y}=0$,

$$
\begin{array}{r}
0=I_{0}(0+\ddot{\beta})-I\left(\omega_{0} \cos \gamma \cos \beta+p\right)\left(-\omega_{0} \cos \gamma \sin \beta\right) \\
-I_{0} \omega_{0} \cos \gamma \sin \beta\left(\omega_{0} \cos \gamma \cos \beta\right)
\end{array}
$$

Neglect ω_{0}^{2} terms \nRightarrow replace $\sin \beta$ by β for small β $\ddot{\beta}+K^{2} \beta=0$ where $K^{2}=\frac{I}{I_{0}} \omega_{0} p \cos \gamma$
This is simple harmonic motion with period of $\tau=\frac{2 \pi}{K}=2 \pi \sqrt{\frac{I_{0}}{I \omega_{0} p \cos \gamma}}$, Thus gyro oscillates about north direction \& with some damping will always point north.

$$
\begin{aligned}
& 7 / 127 \text { Angular velocity } \underline{w} \text { and velocity } \underline{v} \text { of point A are perpendicular. } \\
& \text { Thus } \underline{w} \cdot \underline{w}=0 \\
& \underline{w}=\omega(300 \underline{i}+150 \underline{j}+300 \underline{k}) / \sqrt{300^{2}+150^{2}+300^{2}}=\frac{w}{3}(2 \underline{i}+\underline{j}+2 \underline{k}) \\
& \underline{v}=15 \underline{i}-20 \underline{j}+v_{z} \underline{k} \mathrm{~m} / \mathrm{s} \\
& \text { Thus } \frac{w}{3}(2 \underline{i}+\underline{j}+2 \underline{k}) \cdot\left(15 \underline{i}-20 \underline{j}+v_{z} \underline{k}\right)=0 \\
& \quad 30-20+2 v_{z}=0, v_{z}=-5 \mathrm{~m} / \mathrm{s} \\
& v=\sqrt{15^{2}+20^{2}+5^{2}}=25.5 \mathrm{~m} / \mathrm{s} \\
& v=\frac{d}{2} \omega, d=\frac{2 v}{\omega}=\frac{2(25.5)}{1720 \times 2 \pi / 60}=0.283 \mathrm{~m} \text { or } d=283 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{7 / 128}{p=\frac{v}{r}}=\frac{150\left(10^{3}\right)}{60^{2} \times 0.560 / 2}=148.8 \mathrm{rad} / \mathrm{s} \\
& \underline{p}=148.8 \mathrm{~K} \mathrm{rad} / \mathrm{s} \\
& \Omega=\frac{30 \pi}{180}=0.524 \mathrm{rad} / \mathrm{s} \\
& C_{1}^{\prime}=\Omega \\
& \Omega=0.524 \underline{\mathrm{j} \mathrm{rad}} / \mathrm{s} \\
& \underline{\alpha}=\underline{\Omega} \times \underline{P}=0.524 \underline{j} \times 148.8 \underset{\sim}{k}=77.9 \underline{i r a d} / \mathrm{s}^{2}, \underline{\alpha}=77.9 \underline{i r a d} / \mathrm{s}^{2}
\end{aligned}
$$

$7 / 129$ Angular velocity vector must be along the line of x contact which is the instantaneous axis of zero velocity.

$$
N=5 \times 2 \pi=31.4 \mathrm{rad} / \mathrm{s}
$$

Law of sines gives

$$
\begin{aligned}
& \omega / \sin 30.1^{\circ}=31.4 / \sin 14.90^{\circ}, \omega=31.4 \frac{\sin 30.1^{\circ}}{\sin 14.90^{\circ}} \\
& \underline{\omega}=\frac{61.3}{\sqrt{2}}(\underline{i}+\underline{k})=43.3(\underline{i}+\underline{k}) \mathrm{rad} / \mathrm{s} \mathrm{rad} / \mathrm{s} \\
& \underline{\alpha}=\underline{N} \times \underline{\omega}=-31.4 \underline{k} \times 43.3(\underline{i}+\underline{k})=-1361 \underline{\mathrm{jad} / \mathrm{s}^{2}}
\end{aligned}
$$

To satisfy $\underline{M}=I \underline{\Omega} \times \underline{\underline{p}}$ p must be p_{1}

$$
7 / 132
$$

$7 / 133 \mid v_{A}=v_{B}+\underline{\omega}_{n} \times r_{A / B}$
where $\underline{\omega}_{n}$ is perpendicular to $A B$

$$
\begin{aligned}
& \underline{r}_{A / B}=-0.1 \underline{i}+0.05 j+0.1 \mathrm{k} \mathrm{~m} \\
& \underline{v}_{B}=0.5 j \mathrm{~m} / \mathrm{s} \\
& V_{A}=-0.1 \mathrm{w} \underline{i} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Thus

$$
-0.1 \omega \underline{i}=0.5 \underline{j}+\left\lvert\, \begin{array}{ccc}
\underline{i} & \underline{j} & \underline{k} \\
\omega_{n_{x}} & \omega_{n_{y}} & \omega_{n_{z}} \\
-0.1 & 0.05 & 0.1
\end{array}\right.
$$

Expand, equate like terms get

$$
\begin{align*}
-0.1 \omega & =0.1 \omega_{n_{y}}-0.05 \omega_{n_{z}} \tag{1}\\
0 & =0.5-0.1 \omega_{n_{z}}-0.1 \omega_{n_{x}} \tag{2}\\
0 & =0+0.05 \omega_{n_{x}}+0.1 \omega_{n_{y}} \tag{3}
\end{align*}
$$

Also, $\omega_{n} \perp$ to $A B$ so $\underline{\omega}_{n} \cdot r_{A B}=0$.

$$
\begin{equation*}
\text { so }-0.1 \omega_{n_{x}}+0.05 \omega_{n_{y}}+0.1 \omega_{n_{z}}=0 \tag{4}
\end{equation*}
$$

Solve Eggs (11), (2), (3), (4) al get

$$
\omega=2.5 \mathrm{rad} / \mathrm{s}, \quad \underline{\omega}_{n}=\frac{5}{9}(4 \underline{i}-2 \underline{j}+5 \underline{k}) \mathrm{rad} / \mathrm{s}
$$

$7 / 134$ Let $m=$ mass of each of the

By Eq. B/10, $I_{0}=I_{1}=I_{2}=\frac{m}{3}\left(2 b^{2}+l^{2}\right)$
If $\underline{\ell>6 \sqrt{2}}, I_{0}>I_{3}$ direct precession $1 f \ell<b \sqrt{2}, I_{0}<I_{3}$ retrograde precession

7/135
Let Ω be the angular velocity of the axes $x y z$.

$$
\underline{\Omega}=\frac{2 \pi}{\tau}(\underline{j} \sin \theta+\underline{k} \cos \theta)
$$

Relative to the $x y z$ axes, O^{\prime} is fixed and C moves with speed (v_{c})rel $=R \frac{2 \pi}{\tau}$
So $\underline{\omega}_{\text {rel }}=\frac{\left(v_{c}\right)_{r e l}}{r}(-j)=-\frac{2 \pi R}{\tau} \underline{j}$
Thus $\quad \underline{\omega}=\frac{2 \pi}{\tau}\left[-\frac{R}{r} \underline{j}+\underline{j} \sin \theta+\underline{k} \cos \theta\right]$

$$
=\frac{2 \pi}{\tau}\left[\left(-\frac{R}{r}+\frac{r}{R}\right) j+\frac{\sqrt{R^{2}-r^{2}}}{R} \underline{k}\right]
$$

7/136 From the solution to
Prob. 7/135, the absolute angular velocity of the
 disk is

$$
\begin{gathered}
\underline{\omega}=\frac{2 \pi}{\tau}\left[\left(-\frac{R}{r}+\frac{r}{R}\right) \underline{j}+\frac{\sqrt{R^{2}-r^{2}}}{R} \underline{k}\right] \\
\underline{\alpha}=\underline{\dot{\omega}} ; \quad \text { Need } \underline{j}=\underline{\Omega} \times j=\frac{2 \pi}{\tau}(j \sin \theta+\underline{k} \cos \theta) \times \underline{j} \\
=-\frac{2 \pi}{\tau} \cos \theta \underline{i}=\frac{2 \pi}{\tau}\left(-\frac{\sqrt{R^{2}-r^{2}}}{R} \underline{i}\right)
\end{gathered}
$$

and $\underline{k}=\underline{\Omega} \times \underline{k}=\frac{3 \pi}{\tau}(\underline{j} \sin \theta+\underline{k} \cos \theta) \times \underline{k}$

$$
=\frac{2 \pi}{\tau} \sin \theta i=\frac{2 \pi}{\tau} \frac{r}{R} i
$$

So $\underline{\alpha}=\left(\frac{2 \pi}{\tau}\right)^{2}\left\{\left[\frac{r}{R}-\frac{R}{r}\right]\left(-\frac{\sqrt{R^{2}-r^{2}}}{R}\right) \underline{i}+\frac{\sqrt{R^{2}-r^{2}}}{R} \frac{r}{R} \underline{i}\right\}$

$$
=\left(\frac{2 \pi}{\tau}\right)^{2} \frac{\sqrt{R^{2}-r^{2}}}{r} i
$$

7/137 From Eq. 7/6
$v_{A}=v_{0}+\Omega_{\Omega} \times \underline{r}_{4 / 0}+v_{r e l}$
$\underline{v}_{0}=\underline{O}, \Omega \times r_{A / 0}=\frac{2 \pi}{\tau}\left(\frac{r}{R} j+\frac{\sqrt{R^{2}-r^{2}}}{R} \underline{k}\right) \times 1$
$\left(\sqrt{R^{2}-r^{2}} \underline{j}+r \underline{k}\right)$

$=\frac{2 \pi}{\tau}\left(\frac{2 r^{\frac{}{2}}}{R}-R\right) \underline{i} \quad \Omega=\frac{2 \pi}{\tau}(\underline{j} \sin \theta+\underline{k} \cos \theta)$

$$
\begin{aligned}
& \underline{v}_{r e l}=-r \omega_{r e l} \underline{i}=-r\left(\frac{R}{r} \frac{2 \pi}{\tau}\right) \underline{i}=\frac{2 \pi}{\tau} R_{\underline{i}}=\frac{2 \pi}{\tau}\left(\frac{r}{R} j+\frac{\sqrt{R^{2}-r^{2}}}{R} \underline{k}\right) \\
& \underline{v}_{A}=\frac{2 \pi}{\tau}\left[\frac{2 r^{2}}{R}-R-R\right] \underline{i}, \underline{v}_{A}=-\frac{4 \pi}{\tau}\left(R-\frac{r^{2}}{R}\right) \underline{i}
\end{aligned}
$$

$7 / 138$ Using Eq. $7 / 6$

$$
\begin{aligned}
& \underline{a}_{4}=\underline{a}_{0}+\dot{\Omega} \times r_{A / 0}+\Omega \times\left(\Omega \times r_{A / 0}\right) \\
& +2 \Omega \times \underline{v}_{r e l}+\underline{a}_{r e l} \\
& \underline{a}_{0}=0, \underline{\Omega}=\underline{0} \\
& \Omega \times r_{A / 0}=\frac{2 \pi}{\tau}\left(\frac{r}{R} \underline{j}+\frac{\sqrt{R^{2}-r^{2}}}{R} \underline{k}\right) x \\
& \left(\sqrt{R^{2}-r^{2}} \underline{j}+r \underline{k}\right) \\
& =\frac{2 \pi}{\tau}\left(\frac{2 r^{2}}{R}-\bar{R}\right) \underline{i} \\
& \Omega=\frac{2 \pi}{\tau}(j \sin \theta+\underline{k} \cos \theta) \\
& =\frac{2 \pi}{T}\left(\frac{r}{R} \underline{j}+\frac{\sqrt{R^{2}-r^{2}}}{R} \underline{k}\right) \\
& \Omega \times\left(\Omega \times r_{A / O}\right)=\left(\frac{2 \pi}{\tau}\right)^{2}\left(\frac{r}{R} \underline{j}+\frac{\sqrt{R^{2}-r^{2}}}{R} \underline{k}\right) \times\left(\frac{2 r^{2}}{R}-R\right) \underline{i} \\
& =\left(\frac{2 \pi}{\tau}\right)^{2}\left(\frac{2 r^{2}}{R^{2}}-1\right)\left(\sqrt{R^{2}-r^{2}} \dot{j}-r \underline{k}\right) \\
& \underline{v}_{r e l}=-r \omega_{r e l} \underline{i}=-r\left(\frac{R}{r} \frac{2 \pi}{\tau}\right) \underline{i}=-\frac{2 \pi}{\tau} R \underline{i} \\
& 2 \Omega \times \underline{v}_{r e l}=\frac{4 \pi}{\tau}\left(\frac{r}{R} \underline{j}+\frac{\sqrt{R^{2}-r^{2}}}{R} \underline{k}\right) \times\left(-\frac{2 \pi}{\tau} R \underline{i}\right)=-2\left(\frac{2 \pi}{T}\right)^{2}\left(\sqrt{R^{2}-r^{2} \underline{j}}-r \underline{k}\right) \\
& a_{r e l}=-r \omega_{r e l}^{2} \underline{k}=-r\left(\frac{R}{r} \frac{2 \pi}{\tau}\right)^{2} \underline{k}=-\left(\frac{2 \pi}{\tau}\right)^{2} \frac{R^{2}}{r} \underline{k}
\end{aligned}
$$

Substitute, simplify, \& get

$$
\underline{a}_{A}=\left(\frac{2 \pi}{r}\right)^{2}\left[\sqrt{R^{2}-r^{2}}\left(\frac{2 r^{2}}{R^{2}}-3\right) \underline{j}+\left(3 r-\frac{R^{2}}{r}-\frac{2 r^{3}}{R^{2}}\right) \underline{k}\right]
$$

7/139 $I_{z z}=m r^{2}, k=r=0.060 \mathrm{~m}$

$$
p=10000(2 \pi / 60):=1047 \mathrm{rad} / \mathrm{s}
$$

From Eq. 7/25,

$$
\begin{aligned}
\Omega \approx \frac{g \bar{r}}{k^{2} p} & =\frac{9.81(0.080)}{(0.060)^{2}(1047)} \\
& =0.208 \mathrm{rad} / \mathrm{s} \\
N=\frac{\Omega}{2 \pi} 60 & =\frac{0.208}{2 \pi} \times 60=1.988 \text { cycles } / \mathrm{min}
\end{aligned}
$$

With $\Omega=\dot{\psi}$ very small; the body cone is too small to observe, so space cone is the only relatively apparent cone.

(Note direction of precession on diagram.)

$$
\underline{H}_{0}=\left(-I_{x z} \underline{i}-I_{y z} \underline{j}+I_{z z} \underline{k}\right) \omega
$$

$\left[I_{x z}\right]$ For rod 1, mass per unit
length is $m / L, d m=\frac{m}{L} d s$

$$
\begin{aligned}
I_{x z} & =\int x z d m=\int(s \sin \theta)(s \cos \theta) d m \\
& =\frac{m \sin \theta \cos \theta}{L} \int_{0}^{L} s^{2} d s \\
& =\frac{1}{3} m L^{2} \sin \theta \cos \theta
\end{aligned}
$$

For rod 2, $I_{x z}=m \alpha^{2} \sin \theta \cos \theta$, so total $I_{x z}=\frac{4}{3} m L^{2} \sin \theta \cos \theta$
$\left[I_{y z}\right] I_{y z}=0$ by symmetry
$\left[I_{z z}\right]$ for $\operatorname{rod} 2, I_{z z}=I_{G}+m d^{2}=\frac{1}{12} m L^{2}+m(L \sin \theta)^{2}=m L^{2}\left(\frac{1}{12}+\sin ^{2} \theta\right)$
For rod 1, $I_{Z Z}=\frac{1}{3} m(L \sin \theta)^{2}=\frac{1}{3} m L^{2} \sin ^{2} \theta$
so total $I_{z Z}=\frac{1}{3} m L^{2}\left(\frac{1}{4}+4 \sin ^{2} \theta\right)$
Thus $\underline{H}_{0}=\frac{1}{3} m L^{2} \omega\left(-4 \sin \theta \cos \theta \underline{i}+\left[\frac{1}{4}+4 \sin ^{2} \theta\right] \underline{k}\right)$

$$
T=\frac{1}{2} \underline{\omega} \cdot H_{0}=\frac{1}{2} H_{O_{z}} \omega_{z}=\frac{1}{6} m L^{2} \omega^{2}\left(\frac{1}{4}+4 \sin ^{2} \theta\right)
$$

$7 / 141$ Eq. $7 / 14$ becomes $\underline{H}_{0}=\underline{H}_{c}+\underline{\bar{r}} \times m \underline{\bar{v}}, \underline{\bar{r}}=\overrightarrow{O C}, \underline{\bar{v}}=\underline{v}_{c}$
For disk, $\omega_{y^{\prime}}=\frac{300 \times 2 \pi}{60}+\frac{60 \times 2 \pi}{60} \sin 20^{\circ}=33.6 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \omega_{z}^{\prime}=\frac{60 \times 2 \pi}{60} \cos 20^{\circ}=5.90 \mathrm{rad} / \mathrm{sec} \\
& \omega_{x^{\prime}}=0 \\
& I_{y^{\prime} y^{\prime}}=\frac{1}{2} m r^{2}=\frac{1}{2} \frac{8}{32.2}\left(\frac{4}{12}\right)^{2}=0.01380 \mathrm{lb}-\mathrm{ft} \cdot \mathrm{sec}^{2} \\
& I_{z^{\prime} z^{\prime}}=\frac{1}{4} m r^{2}=0.00690 \mathrm{lb}-\mathrm{ft}-\mathrm{sec}^{2}
\end{aligned}
$$

With $\omega_{x}=0$ \& principal axes $x-y^{\prime}-z^{\prime}$, Eq. $7 / 13$ gives

$$
\begin{aligned}
& H_{c}=I_{y^{\prime} y^{\prime}} \omega_{y^{\prime}} \underline{j}^{\prime}+I_{z^{\prime} z^{\prime}} \omega_{z^{\prime}} \cdot \underline{k}^{\prime}=0.01380(33,6) \underline{j^{\prime}}+0.00609(5.90) \underline{k}^{\prime} \\
& =0.463 \underline{j}^{\prime}+0.0407 \underline{k}^{\prime}=0.42 \underline{\underline{j}}+0.1967 \underline{k} \\
& \bar{r}=\frac{10}{12} \underline{i}=0.833 i \mathrm{lt} \\
& \overline{\bar{v}}=p \underline{k} \times \bar{r}=\frac{60 \times 2 \pi}{60} \mathrm{k} \times 0.833 \underline{i}=5.24 \underline{j} \mathrm{ft} / \mathrm{sec} \\
& \overline{\underline{r}} \times m \overline{\bar{w}}=0.833 \underline{i} \times \frac{8}{32.2}(5.24 \underline{\underline{j}})=1.084 \underline{\underline{k}} \mathrm{lb}-\mathrm{ft}-\mathrm{sec} \\
& H_{0}=0.421 \underline{j}+0.1967 \underline{k}+1.084 \underline{k}=0.42 \underline{\underline{j}}+1.281 \underline{k} 16-f t-\sec \\
& T=\frac{1}{2} \underline{\tilde{v}} \cdot \underline{G}+\frac{1}{2} \underline{\omega} \cdot \underline{H}_{G} \quad(G=C \text { here }) \\
& =\frac{1}{2} 5.24 \underline{j} \cdot \frac{8}{32.2}(5.24 \underline{j})+\frac{1}{2}(29.5 \underline{j}+17.03 \underline{k}) \text {. } \\
& (0.4 \hat{2} \underline{j}+0.1967 \underline{k}) \\
& =11.30 \mathrm{ft}-16
\end{aligned}
$$

$7 / 142 \mathrm{Eq} .7 / 14$ becomes $H_{0}=H_{c}+\underline{E} \times m \bar{V}, \overrightarrow{\underline{r}}=\overrightarrow{O C}, \underline{\bar{v}}=v_{c}$
For disk, $\omega_{x}=\dot{\beta}=\frac{120 \times 2 \pi}{60}=12.57 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \omega_{y^{\prime}}=\frac{300 \times 2 \pi}{60}+\frac{60 \times 2 \pi}{60} \sin 20^{\circ}=33.6 \mathrm{rad} / \mathrm{sec} \\
& \omega_{z^{\prime}}=\frac{60 \times 2 \pi}{60} \cos 20^{\circ}=5.90 \mathrm{rad} / \mathrm{sec} \\
& I_{x x}=I_{z^{\prime} z^{\prime}}=\frac{1}{4} m r^{2}=\frac{1}{4} \frac{8}{32.2}\left(\frac{4}{12}\right)^{2}=0.00690 \mathrm{lb}-\mathrm{ft}-\mathrm{sec}^{2} \\
& I_{y^{\prime} y^{\prime}}=\frac{1}{2} m r^{2}=0.01380 \mathrm{lb}-\mathrm{ft}-\mathrm{sec}^{2}
\end{aligned}
$$

For principal axes $x-y^{\prime}-z^{\prime} E_{q}$. $7 / 13$ gives

$$
\begin{aligned}
& \underline{H}_{c}=I_{x x} \omega_{x} \underline{i}+I_{y^{\prime} y^{\prime}} \omega_{y^{\prime}} \underline{j}^{\prime}+I_{z^{\prime} z^{\prime}} \omega_{z^{\prime}} \underline{k}^{\prime} \\
& =0.00690(12.57) \underline{i}+0.01380(33.8) \underline{j}^{\prime}+0.00690(5.90) \underline{k}^{\prime} \\
& \underline{H}_{c}=0.0867 \underline{i}+0.463 \underline{j}^{\prime}+0.0407 \underline{k}^{\prime} \\
& =0.0867 \underline{i}+0.42 \underline{\underline{j}}+0.1967 \underline{k} 16-f t-\mathrm{sec} \\
& \overline{\underline{F}}=\frac{10}{12} \underline{i}=0.833 \underline{i} \mathrm{tt} \\
& \underline{\bar{r}}=p \underline{k} \times \bar{r}=\frac{60 \times 2 \pi}{60} \underline{k} \times 0.833 \underline{i}=5.24 \underline{j} \mathrm{ft} / \mathrm{sec} \\
& \overline{\tilde{r}} \times m \underline{\bar{v}}=0.833 \underline{i} \times \frac{8}{32.2}(5.24 \underline{j})=1.084 \underline{k} \mathrm{lb}-f t-\mathrm{sec} \\
& H_{0}=0.0867 \underline{i}+0.421 \underline{j}+0.1967 \underline{k}+1.084 \underline{k}=\frac{0.0867 \underline{i}+0.421 \underline{j}+1.281 \underline{k}}{\underline{16-f t-\sec }} \\
& T=\frac{1}{2} \underline{\bar{v}} \cdot \underline{G}+\frac{1}{2} \underline{\omega} \cdot \underline{H}_{G} \quad\left(G=C_{1} \text { here }\right) \\
& =\frac{1}{2} 5.24 \underline{j} \cdot \frac{8}{32.2}(5.24 \underline{j})+\frac{1}{2}(12.57 \underline{i}+29.5 \underline{j}+17.03 \underline{k}) \text {. } \\
& (0.0867 \underline{i}+0.421 \underline{j}+0.1967 \underline{k}) \\
& =11.85 \mathrm{ft}-16
\end{aligned}
$$

$$
\begin{aligned}
\omega_{z} & =\frac{1200(2 \pi)}{60} \\
& =40 \pi \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Eq. 7/23

$$
\begin{aligned}
& \sum M_{x}=I_{y z} \omega_{z}^{2} \\
& \sum M_{y}=-I_{x z} \omega_{z}^{2}
\end{aligned}
$$

Where

$$
\begin{aligned}
I_{y z} & =m 1(5.20 \times 16-5.20 \times 24) \quad y^{\prime} \\
& =-161.4\left(10^{-3}\right) \mathrm{in} .16-\mathrm{sec}^{2} \quad m=\frac{1}{32} \\
I_{x z} & =m(-6 \times 8+3 \times 16+3 \times 24) \\
& =280\left(10^{-3}\right) \mathrm{in} .-16-\mathrm{sec}^{2} \\
\Sigma M_{x} & =-32 R_{B_{y}}=-0.1614(40 \mathrm{n})^{2}, R_{B_{y}}=79.6 \mathrm{lb} \\
\Sigma M_{y} & =+32 R_{B_{x}}=-0.280(40 . \pi)^{2}, R_{B_{x}}=-137.916
\end{aligned}
$$

Because mass center has no acceleration

$$
\begin{aligned}
& R_{A_{y}}=-R_{B_{y}}, R_{A_{x}}=R_{B_{x}} \\
& \quad\left|R_{A}\right|=\left|R_{B}\right|=\sqrt{79.6^{2}+137.9^{2}}=159.316
\end{aligned}
$$

$7 / 144$ With $\omega_{x}=\omega_{y}=0, \omega_{z}=\frac{1200 \times 2 \pi}{60}=125.7 \mathrm{rad} / \mathrm{sec}$, $\dot{\omega}_{x}=\dot{\omega}_{y}=\dot{\omega}_{z}=0$, Eqs. 7/23 about 0 become

$$
\sum M_{x}=I_{y z} \omega_{z}^{2}, \sum M_{y}=-I_{x z} \omega_{z}^{2}, \sum M_{z}=0
$$

Let $m=$ mass of each segment

$$
\text { of length } 6
$$

$$
=\frac{1.4}{32.2}=0.0435 \frac{\mathrm{lb}-\mathrm{sec}^{2}}{\mathrm{ft}}
$$

Static forces produce no moment so are not shown.

$$
\begin{gathered}
(1) \quad(2) \\
I_{x z}=m(b)(2 b)+m\left(\frac{b}{2}\right)(2 b)+m\left(-\frac{b}{2}\right)(b)+m(-b)(b)=\frac{3}{2} m b^{2} \\
M_{y}=-\frac{3}{2} m b^{2} \omega_{z}^{2}=-\frac{3}{2}(0.0435)\left(\frac{6}{12}\right)^{2}(125.7)^{2}=-257 \mathrm{lb}-f t \\
I_{y z}=m\left(-\frac{b}{2}\right)(2 b)+m(0)+m(0)+m\left(\frac{b}{2}\right)(b)=-\frac{1}{2} m b^{2} \\
M_{x}=-\frac{1}{2} m b^{2} \omega_{z}^{2}=-\frac{1}{2}(0.0435)\left(\frac{6}{12}\right)^{2}(125.7)^{2}=-85.81 b-f t \\
M=\sqrt{M_{x}^{2}+M_{y}^{2}}=\sqrt{85.8^{2}+257^{2}}=271 \mathrm{lb}-\mathrm{ft}
\end{gathered}
$$

$$
\begin{aligned}
\text { mass per unit area } & =m /\left(\pi R^{2} / 4\right) \\
& =4 m / \pi R^{2}
\end{aligned}
$$

$$
d m=\frac{4 m}{\pi r^{2}} r d r d \theta
$$

$$
I_{x z}=\int_{-4 m b R} x z d m=\frac{4 m}{\pi R^{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{R}(r \cos \theta) b r d r d \theta
$$

$$
I_{y z}=\int y z d m=\frac{4 m}{\pi R^{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{R}(-r \sin \theta) b r d r d \theta=-\frac{4 m b r}{3 \pi}
$$

Top plate $I_{x z}=-I_{y z}=\frac{4(2)(0.150)(0.150)}{3 \pi}=0.01910 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Lower plate $I_{x z}=-\frac{4 \mathrm{mbR}}{3 \pi}, I_{y z}=\frac{4 \mathrm{mbR}}{3 \pi}$ where $b=0.075 \mathrm{~m}\left(\frac{1}{2}\right.$ of 0.150$)$

$$
I_{x z}=-I_{y z}=-0.01910 / 2=-0.00955 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

From Eq. $7 / 23$ with $\omega_{x}=\omega_{y}=0, \omega_{z}=\frac{2 \pi(300)}{60}=10 \pi \mathrm{rad} / \mathrm{s}, \dot{\omega}_{z}=0$

$$
\begin{aligned}
& \sum M_{x}=I_{y z} \omega_{z}^{2}=(-0.01910+0.00955)(10 \pi)^{2}=-9.42 \mathrm{~N} \cdot \mathrm{~m} \\
& \sum M_{y}=-I_{x z} \omega_{z}^{2}=-(0.01910-0.00955)(10 \pi)^{2}=-9.42 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
M=\sqrt{9.42^{2}+9.42^{2}}=13.33 \mathrm{~N} \cdot \mathrm{~m}
$$

7/146 With $\omega_{x}=\omega_{y}=\omega_{z}=0$ \& $\dot{\omega}_{z}=200 \mathrm{rad} / \mathrm{s}^{2}, ~ E q .7 / 23$ gives

$$
\sum M_{x}=-I_{x z} \dot{\omega}_{z}, \sum M_{y}=-I_{y z} \dot{\omega}_{z}
$$

From solution to Prob. 7/145,

$$
\begin{aligned}
& I_{x z}=0.01910-0.00955=0.00955 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& I_{y z}=-0.01910+0.00955=-0.00955 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

So $\sum M_{x}=-0.00955(200)=-1.910 \mathrm{~N} \cdot \mathrm{~m}$

$$
\begin{aligned}
& \sum M_{y}=0.00955(200)=1.910 \mathrm{~N} \cdot \mathrm{~m} \\
& M=\sqrt{1.910^{2}+1.910^{2}}=2.70 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

